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Entropy production and wave packet dynamics in the Fock space
of closed chaotic many-body systems
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~Received 22 March 2001; published 29 August 2001!

Highly excited many-particle states in quantum systems such as nuclei, atoms, quantum dots, spin systems,
quantum computers, etc., can be considered as ‘‘chaotic’’ superpositions of mean-field basis states~Slater
determinants, products of spin or qubit states!. This is due to a very high level density of many-body states that
are easily mixed by a residual interaction between particles~quasiparticles!. For such systems, we have derived
simple analytical expressions for the time dependence of the energy width of wave packets, as well as for the
entropy, number of principal basis components, and inverse participation ratio, and tested them in numerical
experiments. It is shown that the energy widthD(t) increases linearly and very quickly saturates. The entropy
of a system increases quadratically,S(t);t2, at small times, and afterward can grow linearly,S(t);t, before
saturation. Correspondingly, the number of principal components determined by the entropyNpc;exp@S(t)# or
by the inverse participation ratio increases exponentially fast before saturation. These results are explained in
terms of a cascade model which describes the flow of excitation in the Fock space of basis components.
Finally, the striking phenomenon of damped oscillations in the Fock space at the transition to equilibrium is
discussed.

DOI: 10.1103/PhysRevE.64.036220 PACS number~s!: 05.45.Mt, 03.67.Lx, 24.10.Cn
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I. INTRODUCTION

Highly excited many-particle states in many-body sy
tems quite often can be presented as ‘‘chaotic’’ superp
tions of shell-model basis states; see recent calculations
complex atoms@1#, multicharged ions@2#, nuclei @3#, and
spin systems@4,5#. The origin of this phenomenon relates
a very high density of many-particle energy levels, whi
increases drastically with increase of energy. Indeed,
numberN of combinations in the distribution ofn particles
~or quasiparticles! over m ‘‘orbitals’’ ~single-particle states!
is exponentially large@N;m!/n!(m2n)! in a Fermi sys-
tem#. Therefore, the spacingD between many-body levels i
exponentially small and a ‘‘residual’’ interactionV between
the particles can mix a huge number of the basis states o
mean field H0 ~Slater determinants! when forming exact
eigenstates of the total HamiltonianH5H01V.

The onset of chaos for highly excited states, as well as
many-particle spectra, has recently been studied in grea
tail in terms of the two-body random interaction~TBRI!
model, which was invented about three decades ago@6#. In
this model alltwo-bodymatrix elements are assumed to
independent and random variables, and therefore all dyna
cal correlations are neglected. Thus, the TBRI model is
sentially the random matrix model; however, it differs fro
standard random matrix models where the two-body na
of the interaction is not taken into account~see, e.g.,@7–12#!.

One of the important results obtained recently@13# in the
framework of this model is the Anderson-like transition th
occurs in the Fock space determined by many-particle st
of H0 ~see also@14#!. The critical valueVcr for this transition
is determined by the density of statesr f5df

21 of those basis
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states that are directly coupled by a two-body interacti
When the interaction is very weak,V0!df , exact eigenstates
are d-like functions in the unperturbed basis, with a ve
small admixture of other components which can be found
the standard perturbation theory. With an increase of the
teraction, the number of principal componentsNpc increases
and can be very large,Npc@1. However, if the interaction is
still not too strong,p22AdfD!V0<df @8# , the eigenstates
are sparse, with extremely large fluctuations of compone
In order to have ergodic eigenstates that fill some ene
range ~see below!, one needs to have a sufficiently larg
perturbationV0@df ~for a large number of particles this tran
sition is sharp and, in fact, one needs the weaker condi
V0>df).

Above the threshold of chaosV0>df , the number of
principal basis components in an eigenstate can be estim
asNpc;G/D whereG is the spreading width of thestrength
function. In such chaotic eigenstates any external weak p
turbation is exponentially enhanced. The enhancement fa
can be estimated asANpc}1/AD; see, e.g.,@15# and refer-
ences therein. This huge enhancement has been observ
numerous experiments when studying parity violation effe
in compound nuclei~see, for example, the review@16#!.

In recent work@17,18# the theory of many-body chaos ha
been extended to quantum computers. Since in this case
density of energy levels is extremely high, it is often impo
sible to resolve particular many-body levels. This happe
for the injection of an electron into a many-electron quant
dot, for the capture of an energetic particle by a nucleus
atom, or for different models of quantum computer with
large number of interacting qubits~spins!. In this case the
approach based on the study of stationary chaotic eigens
turns out to be inadequate, and one should consider the
evolution of the wave function and entropy@18#.
©2001 The American Physical Society20-1
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In contrast to the study of spectra and eigenstates, ana
of the evolution of wave packets in random matrix models
based mainly on numerical results. First, one should men
the numerical study@19# of band random matrices that de
scribe quasi-one-dimensional disordered models with a fi
number of channels. Recently, attention has been paid to
so-called Wigner band random model~WBRM! @20#, which
is used in the study of generic properties of strength fu
tions in dependence on the strength of the interac
@21,22#. In particular, in Refs.@23,24# the problem of the
quantum-classical correspondence for the time evolution
wave packets was under close study. We note that
WBRM serves as a convenient random matrix model
different quantum systems, and in many aspects can be c
pared with the TBRI model@25#.

In this paper we study generic properties of the evolut
of wave packets in the energy shell, paying most attentio
the time dependence of the entropy, the width of the pack
and the inverse participation ratio. We derive analytical e
mates for these quantities and check our predictions num
cally using the TBRI and WBR models.

II. TIME EVOLUTION OF CHAOTIC
MANY-BODY STATES

Exact ~‘‘compound’’! eigenstatesuk& of a many-body
HamiltonianH5H01V can be expressed in terms of simp
shell-model basis statesu f & ~eigenstates ofH0), or by prod-
ucts of qubits in the model of a quantum computer:

uk&5(
f

Cf
(k)u f &; u f &5af 1

† , . . . ,af n

† u ‘‘vacuum’’ &. ~1!

Here as
† are creation or spin-raising operators~in the latter

case, the ground stateuvacuum& corresponds to the situatio
with all spins down!, andCf

(k) are components of compoun
eigenstatesuk& formed by the residual interactionV.

In what follows, we consider the time evolution of th
system for the case when the compound eigenstates arecha-
otic. By this term we mean that the number of princip
components is very large,ANpc@1, and the component
Cf

(k) can be treated as uncorrelated amplitudes with a Ga
ian distribution around their mean values~see details in@8#!.
Let us assume that initially (t50) the system is in a specifi
basis stateu0& ~with certain orbitals occupied, or, in the ca
of a quantum computer, when the state with certain sp
‘‘up’’ is prepared!. This state can be presented as a sum o
exact eigenstates of the total HamiltonianH:

u0&5(
k

C0
(k)uk&. ~2!

Then the time-dependent wave function reads as

C~ t !5(
k, f

C0
(k)Cf

(k)u f &exp~2 iE (k)t !. ~3!

Here the sum is taken over the compound statesk and basis
statesf, and we set\51.
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The probability W05uA0u25 z^0uC(t)& z2 of finding the
system in the initial state is determined by the amplitude

A05^0uexp~2 iHt !u0&5(
k

uC0
(k)u2 exp~2 iE (k)t !

.E dE P0~E!exp~2 iEt !. ~4!

Here we replaced the summation over a large numbe
eigenstates by an integration over their energiesE[E(k), and
introduced thestrength function~SF! P0(E) which is also
known in the literature as thelocal spectral density of state
~LDOS!:

P0~E![uC0
(k)u2r~E!, ~5!

with r(E) as the density of exact eigenstates.
As one can see, the probabilityW0 is entirely determined

by the strength function~5!. It is well known that in many
applications this function has the Breit-Wigner~BW! form
with a full width at half maximum~FWHM! G052prH f

2 .
In our caser5r f is the density of directly coupled bas
states andH f

25uH0 f u2 is the variance of the nonzero off
diagonal elements ofH, defined by the residual interactionV.
One should recall that in real situations the second mom
DE

2 of the SF is always finite due to the finite range of inte
action in the energy representation. Therefore, the Br
Wigner form of the SF can occur for a finite energy ran
only, determined by the energy width of the interaction.

However, it was recently shown~see, e.g.,@8,11# and ref-
erences therein! that if G0 defined by the above expression
of the order of~or larger than! the mean-square-root widt
DE of the SF itself, the form of the SF in the TBRI model
very close to Gaussian. Strong deviations of the SF from
BW dependence have been observed numerically w
studying the structure of the SF and eigenfunctions of the
atom @1#. Also, numerical data@3# have revealed that the
form of the SF in nuclear shell models is much closer
Gaussian rather than to the BW form. This results from
fact that the three orbitalss, d3/2, and d5/2 included in
nuclear shell-model calculation@3# have close mean-field en
ergies and the residual interactionV plays the dominant role
in the Hamiltonian matrix.

Recent analytical results@11# for the TBRI model allow a
description of the whole transition for the SF from the B
regime to that of the Gaussian. This model is characteri
by two-body random matrix elements which determine
residual interactionV betweenn Fermi particles occupyingm
orbitals~single-particle states!; see details and references, f
example, in@8,25#. It was shown that in the general case t
SF is given by the following approximate expression@26,11#:

P0~E!5
1

2p

G~E!

@E01d0~E!2E#21G2~E!/4
, ~6!

G~E!.2puH0 f u2r f~E!. ~7!
0-2
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ENTROPY PRODUCTION AND WAVE PACKET DYNAMICS . . . PHYSICAL REVIEW E 64 036220
One can see that the general expression~6! is of the Breit-
Wigner form, but withG(E) as some function of the tota
energyE. Here d0(E) is the correction to the unperturbe
energy levelE0 due to the residual interactionV, andr f(E)
is the density of those basis statesu f & that are directly
coupled by the interactionH0 f with the initial stateu0&. It
was shown@11# that for the TBRI model the functionG(E)
has the Gaussian form with a variance that depends on
model parameters. In the case of a relatively small~but non-
perturbative! interaction, G052pr fH f

2!DE , the function
G(E) is very broad~i.e., it does not change significantl
within the energy intervals;G andDE) and can be treated
as a constant,G(E).G0. In the other limiting case of a
strong interaction,G0>DE , the dependenceG(E) in Eq. ~6!
is the leading one, and the slow dependence in the den
nator can be neglected. One should note that the simple
pression~7! for the width G(E) has to be modified in this
limit; see details in@11#.

The second momentDE
2 of the SF can be found from th

equationDE
25( f Þ0H0 f

2 . Here the summation is taken ove
the off-diagonal matrix elementsH0 f that couple the initial
stateu0& with the othersu f &. For the TBRI model the ana
lytical expression forDE has been obtained in@8#,

DE
25

1

4
V0

2n~n21!~m2n!~m2n13!, ~8!

whereV0
2 is the variance of the off-diagonal matrix elemen

of the two-body residual interactionV. In fact, for Fermi
particles the widthDE turns out to be the same for any bas
stateu0&.

Let us first start with the probabilityW0(t) of the system
staying in the initial state. In the two limiting cases of sm
and very large times, the dependenceW0 is shown@18,27# to
be of the following forms:

W0~ t !5 exp~2DE
2 t2!, t!

Gp

DE
2

~9!

and

W0~ t !5C exp~2Gpt !, t@
Gp

DE
2

. ~10!

HereGp is the imaginary part of the pole of the SF@see Eq.
~6!# in the complex energy plane. In the case when the
has the standard BW form@28,29#, we have the obvious re
lation Gp5G0 where the latter is given by the Fermi golde
rule. In the other limit of a strong interaction, when the S
has the Gaussian form, the expression forGp is not simple.
The transition from one regime of time dependence ofW0(t)
to the other is schematically shown in Fig. 1.

Now we estimate the probabilitieswf5uAf(t)u2 of finding
the system in other basis states. For a very small time
have

wf5 z^ f ue2 iHt u0& z2.uH0 f u2t2. ~11!
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Note that only the states directly connected to the initial st
are populated at this time scale. One can estimate the p
lation of these states for a larger time by substituting
time-dependent wave functionC(t)5A0(t)c01( fAf(t)c f
into the Schro¨dinger equation,

i\
dAf

dt
5H0 f~ t !A01(

k
H f k~ t !Ak . ~12!

Herek, f Þ0 andH0 f(t)[H0 f exp(iv0ft). Note that the sec-
ond term in the right-hand side may be treated as a rand
variable with zero mean value. Indeed,Ak}H0k and there-
fore H f k(t)H0 f50. The variance of this term is
(kuH f k(t)Aku25uH f k(t)u2(kuAku25uH f k(t)u2(12uA0u2).
Comparing this with the first term in the right-hand side
Eq. ~12!, one may conclude that the second term is not v
important for small times whenA0(t);1. Neglecting the
second term and assuminguA0(t)u5 exp(2Gt/2), which is
valid for G!DE , we obtain@18#

wf5uH0 f u2U E
0

t

uA0~ t !ueiv0 f tdtU2

.
uH0 f u2

v0 f
2 1G2/4

ue( iv0 f2G/2)t21u2, ~13!

wherev0 f5Ef2E0. This approximate estimate shows th
only the basis states within the energy intervalG can be
substantially populated~if G.DE , this energy interval is
equal toDE).

For large times, the result is different for the perturbati
and chaotic regimes. In the perturbative regime the exp
sion ~13! for wf is the final one. In the chaotic regime th
asymptotic expression fort→` can be obtained in the fol
lowing way. The projection ofC(t) @see Eq.~3!# onto the
statef gives

wf~ t !5wf
s1wf

f luct~ t !, ~14!

FIG. 1. Schematic time dependence ofW0(t) for Gp50.5,DE

51.2; the pointtc where the dependence~9! is changed to~10! is
tc5Gp /DE

2'0.17.
0-3
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wf
s5(

k
uC0

(k)u2uCf
(k)u2.E dE

r~E!
P0~E!Pf~E!

.
1

2pr

G t

~E02Ef !
21~G t/2!2

. ~15!

Here the result is written for the case when the SF has
BW form for both initial u0& and final statesu f & with the
corresponding FWHM’sG0

0 andG0
f . In this case the resulting

form of wf
s is, approximately, again the Breit-Wigner wit

the new FWHMG t.G0
01G0

f .2G0. However, if G0>DE ,
the form of wf

s is close to Gaussian with the varianc
(DE) t

2.2DE
2 @18#.

The termwf
f luct(t) can be written in the form

wf
f luct~ t !5 (

k,p;kÞp
C0

(k)Cf
(k)C0

(p)Cf
(p) exp@ i ~E(k)2E(p)!t#.

~16!

At large time,t→`, the terms in the sum rapidly oscillat
and one can putwf

f luct(t)50. Thus, asymptotically the dis
tribution of the components in the time-dependent wa
function is close to that given by the form of the streng
function @see Eqs.~5! and~6!#, with a slightly larger spread
ing width.

Note that the similar expression forW0 contains the term
uC0

(k)u4. For Gaussian fluctuations of the componentsC0
(k) ,

one can getuC0
(k)u4 5 3 (uC0

(k)u2)2, which is the known result
in random matrix theory@29,30#. Therefore, if the number o
principal componentsNpc in the SF is very large, the prob
ability of finding the system in the initial stateu0& at large
times is at least three times larger than the probability
finding the system in any other stateu f & ~see Figs. 2 and 3!.

In these figures the distribution of probabilitieswf in the
TBRI model is shown after a very long timet540 for two
different strengths of interaction~in fact, the timet is mea-
sured in units\/d0 whered05^es112es& is the mean level
spacing between single-particle energieses). In both cases

FIG. 2. Asymptotic distributionwf for the case when the
strength function is of the Breit-Wigner form in the TBRI mode
The parameters aren56, m512, V0

2'0.003, G0'0.50,DE'1.16,
with the average overNg510 matrices with different realizations o
random two-body matrix elements~see text!.
03622
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n56 Fermi particles occupym512 orbitals and therefore
the total number of many-particle states~the size of the
Hamiltonian matrix! is N5924. The distribution ofes is
taken random withd051. Two-body matrix elements ar
taken as Gaussian random entries with zero mean and
anceV0

2, and in order to reduce the fluctuations the distrib
tion wf is obtained with an average over a numberNg of
matrices with different random realizations. Initially, on
one basis staten05462 was populated at the center of th
energy spectrum, in order to avoid asymmetry of the dis
bution in the basis representation.

The two different values ofV0 for which the distributions
wf are obtained are chosen in such a way that in one c
~see Fig. 2! the strength function has the Breit-Wigner form
and in the other the form is very close to Gaussian~Fig. 3!.
We should recall that the above two forms occur in the
ergy representation, but the results are shown in the b
representation. These two representations are related thr
the density of states which is known to be of the Gauss
form for large numbers of particles and orbitals@6,29,30#.

One can see that in both cases, Figs. 2 and 3, the p
ability of staying in the original basis state is much larg
than in the nearest ones. Compared with the result of s
dard random matrix theory, one can say that there is a
ticeable difference~namely, the enhancement factor in Fig.
is about 2.3, instead of 3.0!.

III. THE CASCADE MODEL

One important question is how the entropy of quantu
isolated systems increases in time at the transition to equ
rium. It is natural to define the entropy of a many-body st
through the Shannon entropy,

S~ t !52(
f

wf ln wf52W0 ln W02(
f Þ0

wf ln wf .

~17!

HereW0(t)5uA0(t)u2 is the probability for the system to b
in the initial state, andwf(t)5uAf(t)u2 is the probability to

FIG. 3. Asymptotic distributionwf for the case when the
strength function is close to Gaussian. The only difference fr
Fig. 2 is the interaction strengthV0

2'0.083, and correspondingly
G0'10.5 and DE'5.8; the average was taken overNg550
matrices.
0-4
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ENTROPY PRODUCTION AND WAVE PACKET DYNAMICS . . . PHYSICAL REVIEW E 64 036220
be in the basis stateu f &. In what follows we assume that th
initial conditions areW0(0)51 andwf(0)50, and therefore
the entropy is equal to zero fort50.

In order to study the evolution of a many-particle syste
with two-body interaction, it is convenient to introduce su
classes for all basis states in the following way. Thefirst
classcontains thoseN1 basis states that are directly coupl
with an initial state by the two-body interaction given b
matrix elementsH0 f of the interaction. Correspondingly, th
second classconsists ofN2 basis states that are coupled wi
the initial one in the second order of the perturbation; t
coupling is determined byH0aHa f , etc.

Let us first consider the evolution for a large timet
@G/(DE)2 ~below we assume the BW shape of the SF!. For
this case the probabilities of the states in different classes
be determined by the ‘‘probability conservation equations

dW0

dt
52GW0 ,

dW1

dt
5GW02GW1 ,

•••

dWk

dt
5GWk212GWk , ~18!

•••.

HereWk is the probability for the systems to be in the cla
k. The first termGWk21 in the right-hand side of Eq.~18! is
responsible for the flux from the previous class, and the s
ond termGWk describes the decay of the states in the clask
into the next classk11. We assume that the probability o
the return to the previous class can be neglected. This
valid approximation if the number of statesNk11 in the next
class is large in comparison withNk of the previous class
This approach can be compared with those based on the
ley tree model@13# where the flow from each state goes in
M other states; therefore,Nk.Mk with M@1. Note that here
we consider a system that is far from equilibrium. Indeed
the system is in equilibrium, the probabilities for all stat
within the energy shell defined by the relationuEf2E0u<G
are of the same orderwf.Npc

21 , with Npc as the total numbe
of states inside the energy shell. Therefore, in order to
glect the return flux, one needs the conditionwf5Wk /Nk
@1/Npc to be fulfilled.

Equations~18! have the simple solution

W05 exp~2Gt !,

Wn5
~Gt !n

n!
exp~2Gt !5

~Gt !n

n!
W0 . ~19!

The maximal probabilityWn5(nn/n!)exp(2n)'1/A2pn to
be in the classn determined by the conditiondWn /dt50
occurs fort5n/G; therefore, this solution~19! can be con-
sidered as acascadein the population of different classes
03622
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Indeed, at small timest!t[1/G the system is essentially in
the initial state, at timest't the flow spreads into the firs
class, for t5nt it spreads into thenth class, etc. For an
infinite chain one can easily check the normalization con
tion

(
n50

`

Wn5 exp~2Gt ! (
n50

`
~Gt !n

n!
51. ~20!

IV. TIME DEPENDENCE OF THE ENTROPY

The above expressions allow us to find the time dep
dence of the entropy,

S~ t !'2 (
n50

`

Wn ln
Wn

Nn

5Gt ln M1Gt2e2Gt (
n50

`
~Gt !n

n!
ln

~Gt !n

n!
, ~21!

wherewf'Wn /Nn stands for the population of basis stat
of the classn with Nn as the number of states in this class@in
fact, for t;nt one needs to count only the states inside
energy shell since the population of the states outside
energy interval withuEf2E0u.G is small; see Eq.~13!#.
Here we have used the relationsNn5Mn and
(n50

` @(Gt)n/n! #n5Gt exp(Gt). The two last terms in the
right-hand side of Eq.~21! turn out to be smaller than th
first one, so one can write

S~ t !'Gt ln M @11 f ~ t !# ~22!

with some functionf (t)!1 that slowly depends on time.
In this estimate for the increase of entropy, we did n

take into account the influence of fluctuations ofwf . One
can show that, for Gaussian fluctuations of the coefficie
Af with the variance given by their mean-square values, fo
large number of principal componentsNpc(t)[ exp@S(t)# the
entropy should be corrected by a small factor of the orde
ln 2 ~see, for example,@31#!.

If one neglects the second term in Eq.~22!, we obtain a
linear increase of the entropy, which means that the num
of principal componentsNpc(t) increases exponentially fas
with time. This behavior can be compared with the line
increase of dynamical entropyScl(t) in classical chaotic sys
tems whereScl(t) was found to be related to exponenti
divergence of close trajectories in the phase space†Scl(t)
}lt with l as the Lyapunov exponent; see, for examp
@32#‡. The nontrivial point is that the linear increase of e
tropy also occurs for systems without the classical limit; s
the recent paper@33#.

Note that for a small time the functionW0(t) has the form
W0(t)5 exp(2DE

2t2) @see Eq.~9!#, not the exponential de
pendence exp(2Gt) . Therefore, one should modify the ex
pression for the entropy in order to make it valid for sm
times. For this, we replaceGt in Eq. ~19! by a more accurate
0-5



ed

s

tio

th
o
ca
ac
f
o
n

io

e

n
os
ly

di-
th

ith
the
n-
of

e
ion

si-
. In

ined

in
the

se
ters

-

mate
e

V. V. FLAMBAUM AND F. M. IZRAILEV PHYSICAL REVIEW E 64 036220
expression,2 ln(W0), which givesDE
2 t2 for small timest

!G/DE
2 andGt for large timest@G/DE

2 ; therefore,

Wn5
~ ln W0

21!n

n!
W0 . ~23!

It is easy to check that the normalization condition is fulfill
again,

(
n51

`

Wn5 (
n51

`
~ ln W0

21!n

n!
W05W0 exp@ ln~W0

21!#51.

~24!

For the entropy one obtains

S52 (
n51

`

Wn lnS Wn

Nn
D . ~25!

At small timest!G/DE
2 the entropy is given by two term

n50 andn51 ~direct transitions!; therefore,

S~ t !52W0~ t !ln W0~ t !2W1~ t !lnS W1

N1
D

'DE
2 t2F11 lnS DE

2 t2

N1
D 21G . ~26!

This expression can be compared with the direct calcula
based on the relationwf5uH0 f tu2,

S~ t !5DE
2 t21t2(

f
uH0 f u2 lnS 1

H0 f
2 t2D . ~27!

There is agreement between Eqs.~26! and ~27! since DE
2

5( f uH0 f u25N1H0 f
2 .

Let us now discuss the whole time dependence of
entropy, including large timest when the system is close t
equilibrium. In a finite system of particles any basis state
be reached, starting from an initial state, in several ‘‘inter
tion steps’’ (H0aHabHbg•••). For example, in a system o
n56 particles three steps are needed since the two-b
interaction cannot move more than two particles from o
basis state to another. If the number of classesnc is finite, the
states in the last class do not decay@there is no term
2GWnc

in the last equation in~18!#, and the probability of
being in the last class is determined from the normalizat
condition Wnc

512(k50
nc21Wk . The additional condition is

that the considered basis states should be inside the en
interval uEf2E0u<min(G,DE), thus limiting the numberNn
of the basis states in each class. Note that the value ofWn is
restricted from below by the equilibrium relationWn
>Nn /Npc . These limitations make an ‘‘exact’’ expressio
for the entropy very complicated. Instead, we can prop
the following simple expression which is approximate
valid in systems with a small number of classes (nc;1):
03622
n

e

n
-

dy
e

n

rgy

e

S~ t !52W0~ t !ln W0~ t !2@12W0~ t !# lnS @12W0~ t !#

Npc
D .

~28!

This expression takes into account the normalization con
tion ( f Þ0wf512W0 and has a reasonable behavior for bo
small and large times.

V. NUMERICAL RESULTS FOR THE ENTROPY

Now we compare the analytical expressions obtained w
numerical data for the TBRI model. For the case when
strength function has the Breit-Wigner form, the time depe
dence of the entropy is shown in Fig. 4 for the parameters
Fig. 2, n56, m512,V0

2'0.003,G0'0.50,DE'1.16, with
the average overNg52 Hamiltonian matrices.

The numberM of basis states directly coupled by th
random two-body interaction is determined by the express
@7#

M5n~m2n!1
n~n21!~m2n!~m2n21!

4
, ~29!

where the first term gives the number of one-particle tran
tions, and the second stands for two-particle transitions
our case ofn56 particles andm512 orbitals, the total num-
ber of basis states isN5924 andM5261. Theeffective
numberof classes in the cascade model can be determ
from the relationMnc5N. This givesnc5 ln N/ln M'1.2.
Thus, we can use the simple expression~28! to describe the
dependence of the entropy on time analytically. The data
Figs. 4 and 5 demonstrate excellent agreement between
numerical and analytical results.

FIG. 4. Entropy versus time for the TBRI model in the ca
when the SF has the standard Breit-Wigner form. The parame
are the same as in Fig. 2, withNg52. The circles stand for numeri
cal data, the solid curve is the analytical expression~28!, and the
dashed line represents a linear slope according to the approxi
expression~30!. In the inset the same is shown for a smaller tim
scale.
0-6
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We should note that the theoretical dependence~28!
which gives a quite good approximate description of the d
on the whole time scale, has a parameterNpc @effective num-
ber of principal components in the stationary distributi
wf(t→`)] that is related to the limiting value of the entrop
Npc5 ln S(`). It can be estimated analytically as discuss
above from the width of the energy shell; when plotting t
solid curves in Figs. 4 and 5 we have used the exact va
found numerically.

To avoid confusion, we should explain that theactual
numberof classes in the case ofn56 particles andm512
orbitals is equal to 3 since all basis states can be populate
the third order in the two-body interaction. However, t
number of states in the second,k52, and third,k53, classes
is much smaller than follows from the exponential relati
Nk5Mk ~in practice, this relation may be justified for a larg
number of particles only!. This is the reason why the one
class formula~28! works so well.

It is also instructive to compare the entropy with the line
time dependence

S~ t !5Gt ln M ~30!

that stems from Eq.~22! if the first term only is taken. This
dependence corresponds globally to the data on some
scale; however, the actual dependence ofS(t) clearly differs
from the linear one~see inset in Fig. 4!. Note that the qua-
dratic increase of energy occurs on a very small time sc
only. As for the oscillations of the entropy for a very larg
time close to equilibrium, this phenomenon will be discuss
below.

For a strong interaction, when the form of the SF is ve
close to Gaussian, numerical data are reported in Fig. 5
n56, m512 and forn57, m513. The interaction strength
is chosen in order to have the same ratioG0 /DE'1.8 as in
Fig. 4.

In this case the FWHM of the strength function is det
mined byDE sinceG052pr fH0 f

2 is larger thanDE . As a
result,G in the expressions~22! and~28! plays the role of the
width DE . In both cases numerical data give strong evide
of a linear increase of the entropy

FIG. 5. Time dependence of the entropy for the TBRI mo
when the strength function is of the Gaussian form:~a! n56,m
512,V0'0.083,G0'10.5,DE'5.8, and ~b! n57,m513,V0

'0.12,G0'14.6,DE'8.13. Circles are numerical data forNg52,
solid curves stand for the approximate expression~28!, and dashed
lines represent the linear dependence~31!.
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S~ t !5DEt ln M ~31!

before saturation. It is clearly seen that this analytical e
mate gives a correct value for the slope ofS(t). The shift is
due to the initial time scale where the time dependence
quadratic; this fact is neglected in the estimate.

It should be pointed out that the linear dependence ofS(t)
in Fig. 5 is much more pronounced than in the BW regi
~compare with Fig. 4 for which the SF is of the Breit-Wign
form!. Our results indicate a clear difference between the t
cases related to the Breit-Wigner and Gaussian forms of
SF. This point is supported by recent studies@23,24# where it
was shown that, for a relatively weak interaction (G0 is small
in comparison withDE) resulting in the Breit-Wigner form
of the SF, there is no detailed quantum-classical corresp
dence for the evolution of wave packets in the energy spa
On the other hand, in the Gaussian region~with the Gaussian
form for the SF!, a detailed quantum-classical correspo
dence is possible@23,24#. In the latter case one can expect
linear growth for the entropy, as was found in classical mo
els @32#. The principal difference between these two cas
~concerning the quantum-classical correspondence and
possibility of localization in the energy shell! was discussed
in Ref. @21#.

VI. WIDTH OF PACKETS AND INVERSE
PARTICIPATION RATIO

The width of the wave function in the basis representat
can be measured through the variance,

D2~ t !5(
f

~nf2n0!2uAf~ t !u25@12W0~ t !#uD f~ t !u2,

uD f~ t !u25

(
f

~n02nf !
2uAf~ t !u2

(
f

uAf~ t !u2
, ~32!

wherenf andn0 label corresponding basis states,f Þ0, and
we have used the normalization condition( f uAf(t)u251
2W0(t). The functionuD f(t)u2 is a slow function of time; it
changes from the effective bandwidth of the Hamiltoni
matrix, entirely determined by the matrix elementsH0 f , to
the final width of the wave packet in the basis representat
which is defined by the width of the energy shell~approxi-
mately equal toA2DE). Therefore, the leading time depen
dence is given by the term 12W0(t).

For relatively small times before saturation, we can u
the simple estimatewf'uH0 f tu2, which results in the follow-
ing quadratic dependence:

D2~ t !'t2(
f

~nf2n0!2H0 f
2 5t2V0

2D0
2 . ~33!

HereD0 is some constant related to the effective bandwi
of the Hamiltonian matrix. The linear dependence of t

l
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width of the packet,D(t)5tV0D0, corresponds to the ge
neric ballisticlike behavior of wave packets found for t
WBRM model @23#.

Note that the bandwidth of the Hamiltonian matrix can
much larger than the final width of the wave packet due
the dependence of the latter on the interaction stren
Therefore, the linear increase ofD(t) can be very fast, and i
quickly becomes saturated on the time scale of the app
bility of the expansion inHt; see Eq.~33!.

Before comparing the expressions obtained with num
cal data, let us first analyze the time dependence of the n
ber of principal componentsNpc(t) for wave packets in the
basis representation. It is natural to defineNpc through the
entropy,Npc(t)5 exp@S(t)#. This definition has been widely
used in different applications; see, for example,@31#.

The number of principal components can also be defi
through the inverse participation ratiol ipr :

~ l ipr !
215( uAf u4'(

k

Wk
2

Nk

'W0
2(

k

~ ln W0
21!2k

k!k!Nk
. ~34!

Here we used Eq.~23! for Wk . The sum in Eq.~34! gives the
following result for the infinite number of classes~this may
be a reasonable approximation for timet!nct):

@ l ipr~ t !#215W0
2I 0S 2 ln~W0

21!

AM
D , ~35!

whereI 0(z) stands for the modified Bessel function and w
used the relationNn5Mn.

This expression has the following asymptotics:

@ l ipr~ t !#215W0
2S 11

1

N1
~ ln W0

21!2D
'122t2~DE!2S 11

1

N1
D ~36!

for small time, and

@ l ipr~ t !#215 expF22GS 12
1

AM
D tG ~37!

for large time. Therefore,Npc defined through the invers
participation ratiol ipr may also have an interval of expone
tial increase in time@if the number of classesnc is not small
and we can extend the summation overk in Eq. ~34! to
infinity#. Here we again neglected the fluctuations ofAf(t)
which may increase the value ofl ipr

21 by up to a factor of 3.
For a system with a small number of classes one

suggest the approximate expression

@ l ipr~ t !#215W0
21

~12W0!2

l ipr~`!
. ~38!
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This expression takes into account the normalization con
tion ( f Þ0wf512W0 and has a reasonable behavior for bo
small and large times.

In any system with a finite number of particles the ener
shell contains a finite number of basis states. For a station
chaotic state the number of principal components is e
mated asNpc

st ;G/D where D is the mean energy distanc
between many-particle levels~we assume here that th
spreading widthG of exact eigenstates is less thanDE). In
the nonstationary problem this leads to the saturation
Npc(t) to the valueNpc(`).2Npc

st , and to the maximal
value S' ln Npc(`) for the entropy~see above and in Ref
@18#!.

Numerical data for the TBRI model for the case when t
SF is of the Breit-Wigner form are summarized in Fig. 6 f
the same parameters as in Fig. 2 and Fig. 4. Three quan
are plotted here: the widthD(t), the number of principal
componentsNpc(t)5 exp@S(t)#, and l ipr(t)5@(uAf(t)u4#21

determined by the inverse participation ratio. ForNpc(t) two
curves are given; one is due to the analytical expression~28!
for the entropy, and the other is computed directly from t
evolution of the TBRI model, with an additional averag
over Ng52 number of realizations of the random Ham
tonian.

From the reported data one can see that the time de
dence of the widthD(t) of the packets is quite simple
namely, on the first very short time scale the increase of
width is linear in time@see also the inset in Fig. 6 whereD(t)
is shown on this time scale#, and afterward the width quickly
saturates. This behavior is in correspondence with the a
lytical estimates discussed above, and with numerical res
found in the WBRM@23#.

FIG. 6. Time dependence of different quantities for the TB
model in the case of the BW form of the strength functions. T
parameters are the same as in Fig. 4, withNg52. Circles stand for
numerical data forNpc5 exp@S(t)# with S(t) taken from Fig. 4, dots
correspond to the analytical expression forNpc(t) with S(t) from
Eq. ~28!, triangles represent numerical data for the widthD(t), and
squares are numerical results forl ipr(t). The width D(t) on a
smaller time scale is shown in the inset.
0-8
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ENTROPY PRODUCTION AND WAVE PACKET DYNAMICS . . . PHYSICAL REVIEW E 64 036220
In contrast to this time dependence, the increase of
number of principal componentsNpc(t) is very different,
both for Npc(t) defined by the entropy and forl ipr(t) deter-
mined by the inverse participation ratio. Indeed, bothNpc(t)
and l ipr(t) increase slowly in time before saturation to the
limiting values. The absolute difference between these
quantities is not important since the definition ofl ipr is given
up to some factor that is sensitive to the type of fluctuatio
in Af(t). As we already noted, the Gaussian fluctuations
crease the value ofl ipr by the factor 3.

One of the most interesting facts that can be drawn fr
these data is the big difference for characteristic time sc
that correspond to saturation. Indeed, if the widthD(t) com-
pletely saturates at timet'0.5, bothNpc and l ipr manifest a
very slow saturation by the timet'20. This means that the
mechanism for the width increase is different from that
sponsible for the increase of the number of principal com
nents in the wave packet.

To explain this phenomenon let us consider the ini
time scale for the time dependence ofNpc and l ipr , where
one can detect an approximate linear increase of the ent
S(t). The very point is that at small timest<t the wave
function has a large number of holes since only directly c
nected basis states are populated. For a system with a
numbern of particles the fraction of these states is expon
tially small @; exp(2n)# due to the two-body nature of th
interaction. With increase of time, fort>t5G0

21, the states
in other classes start to be filled and the holes begin to
appear. This stage fort,nct corresponds to the exponenti
increase of the number of principal components and the
ear increase of the entropy.

It is instructive to analyze the evolution of wave packe
on the smaller time scale of the ballistic spread; see Fig
These data confirm theoretical expectations according
which at small times only those basis states that belong to
first class are involved in the dynamics. Indeed, large g
are clearly seen in the distribution ofwf , which persist dur-

FIG. 7. Wave packetwf(t) for the TBRI model at different
timest50.2, 0.4, 0.6, 0.8 for the parameters of Fig. 6. One parti
lar Hamiltonian matrix is used without any additional average.
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ing the whole time of the ballisticlike spread. These ga
reduce the number of principal components; however, t
are not important for the calculation ofD(t) @see Eq.~32!#.

An important peculiarity of the wave dynamics is th
initially all basis states of the first class are excited. One
see that for a very small timet50.2 the whole available
region 1, f ,N is filled with approximately the same ampl
tudes wf5uH0 f tu2. With increase of time, the amplitude
grow and form the envelope of the packet, in accorda
with Eq. ~13!. One should stress that the quadratic time d
pendence for the second moment of a packet on this s
time scale occurs not due to a linear spread of the front of
wave packet, but due to a specific growth of the amplitud
of those basis states that are located inside the energy s

The remarkable effect is a kind of oscillation for all qua
tities of Fig. 6. Similar oscillations~although not so strong!
are also present in the time dependence of the entropyS(t)
~see Fig. 4!. Since the periodT'6.5 of these oscillations is
much larger than the time scalet'0.5 of the ballistic spread
of wave packets, it is clear that this effect is entirely relat
to the dynamics in the Fock space formed by differe
classes. The origin of these oscillations can be explaine
terms of the cascade model discussed in Sec. III. Indeed,
can expect a strong effect of areflectiondue to the finiteness
of the Fock space. The first reflection occurs fort0
'nc(G0)21; therefore, the period of oscillation isT'2t0.
One can see that this estimate gives the correct result fT
with nc'1.5. This value is close to our rough estimatenc
;1.2 for an effective number of classes.

To compare the data forl ipr defined by the inverse par
ticipation ratio with the analytical expression~38!, we have
plotted separately both results for a larger time scalet<40 in
Fig. 8. One can see that our estimate~38! gives a quite ac-
curate description of the data on a large time scale upt
'20. After this time, saturation occurs and all local tim
dependence may be treated as fluctuations around the l
ing value. The data presented in this figure give strong e
dence of the effectiveness of our analytical approach.

Let us now come to the case when the form of t
strength function is close to Gaussian. In Fig. 9 one can

-

FIG. 8. Time dependence ofl ipr(t) for the parameters of Fig. 6
on a larger time scale for one Hamiltonian matrix. The solid cu
stands for numerical data, and the dashed curve corresponds t
analytical expression~38!.
0-9
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V. V. FLAMBAUM AND F. M. IZRAILEV PHYSICAL REVIEW E 64 036220
that the analytical expressions connecting the probab
W0(t) of staying in an initial basis state with the time depe
dence of the number of principal componentsNpc(t)
5 exp@S(t)# and l ipr(t) give a correct global description o
the numerical data. When compared with the previous c
of the BW form of the SF~see Figs. 6 and 8! one can con-
clude that for a strong interaction~when the Gaussian depen
dence for the SF emerges! the behavior of all quantities doe
not reveal strong oscillations. This effect is related to the f
that the time scale for the saturation of the width of pack
is of the same order as that for the saturation of bothNpc and
l ipr . In such a case the effect of reflection in the Fock sp
is suppressed by the strong spread of packets in the en
shell.

One can see, that there is a quite strong difference in
time dependence of all quantities discussed above for the
extreme cases of the Breit-Wigner and Gaussian forms of
strength function. In the BW case the two effects~ballistic-
like spread of packets and cascadelike evolution in F
space! have very different time scales, and both these effe
can be distinguished in the dynamics. Contrarily, in the s
ond case of the Gaussian form of the SF, the two time sc
are comparable. Therefore, the two effects coexist on
same time scale and, as a result, the global time depend
turns out to be much simpler.

VII. COMPARISON WITH WIGNER BAND
RANDOM MATRICES

In this section we discuss numerical results obtained
the WBRM model for the same quantities as conside
above. The dynamics of wave packets in this model has b
studied recently in@23# in connection with the problem o
quantum-classical correspondence. Here, instead, we con
trate our attention on the correspondence between the ev
tion of packets in the WBR and TBRI models.

As was mentioned, the WBR model is quite close to

FIG. 9. The same quantities as in Fig. 6 for a strong interac
with the Gaussian form of the SF. The parameters for the TB
model are the same as in Fig. 5~a!: n56, m512, V0'0.083,G0

' 10.5, DE'5.8. Solid curves correspond to numerical da
dashed curves stand for the corresponding analytical expres
Eq. ~38! for l ipr(t) and Eq.~28! for S(t) in the definitionNpc(t)
5 exp@S(t)#.
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TBRI model. It consists of two parts, one of which is
diagonal matrix with increasing ‘‘energies’’e j and the other
a band matrixVi j ,

Hi j 5e jd i j 1Vi j , ~39!

whered i j is the delta function. In the original papers@20# the
‘‘unperturbed spectrum’’ was taken in the form of th
‘‘picket fence,’’ e j5 jD , whereD5r0

21 is the spacing be-
tween two close energies andj is a running integer number
We consider here the case with random valuese j with mean
spacingD, reordered in an increasing waye j 11.e j . As for
the off-diagonal matrix elementsVi j , they are assumed to b
Gaussian, random, and independent variables inside the
u i 2 j u<b, with the zero mean̂Vi j 50& and variancê Vi j

2 &
5V0

2 . Outside the band, the matrix elements vanish. Th
the control parameters of this model are the ratioV0 /D of a
typical matrix element to the mean level spacing, and
band width b. As one can see, the first term in Eq.~39!
corresponds to a ‘‘mean field’’H0, and the interactionV has
a finite energy range.

The SF for the WBRM was analyzed in Ref.@20#. It was
analytically found that the form of the strength function e
sentially depends on one parameterq5r0

2V0
2/b only. Wigner

proved@20# that for a relatively strong perturbationV0@D in
the limit q!1 the form of the LDOS is Lorentzian,

WBW~Ẽ!5
1

2p

GBW

Ẽ21
1

4
GBW

2

, Ẽ5E2D j , ~40!

which nowadays is known as the Breit-Wigner dependen
Here the energyẼ refers to the center of the distribution. Th
FWHM GBW of the distribution~40! is given by the Fermi
golden rule,

GBW52pr0V0
2 . ~41!

In the other limitq@1 the influence of the unperturbed pa
H0 can be neglected and the shape of the SF tends to
shape of the density of states of the band random matrixV,
which is known to be a semicircle.

Recently, Wigner’s results have been extended in@22# to
matricesH with the general form ofV, when the variance of
the off-diagonal matrix elements decreases smoothly w
the distancer 5u i 2 j u from the principal diagonal. In this
case the effective band sizeb is defined by the second mo
ment of the envelope functionf (r ). Another important gen-
eralization of the WBRM studied in@22# is an additional
sparsity of the matrixV, which may mimic realistic Hamil-
tonians. In such a form, the WBRM is closer to the TB
model; however, in the latter the sparsity of the interaction
due to the two-body nature of the interaction. As a result,
positions of zero elements are not completely random a
the WBRM; see details in@7,9#.

Random matrix models of the type~39! are very useful
for understanding the generic properties of the SF. The c
dition for the SF to be of the BW form in the WBRM has th
simple form@22#

n
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D!GBW!Db , Db5bD. ~42!

The left part of this relation indicates the nonperturbat
character of the interaction, according to which many unp
turbed basis states are strongly coupled by the interac
On the other hand, the interaction should not be very stro
namely, the widthGBW determined by Eq.~41! has to be less
than the widthDb of the interaction in the energy represe
tation. The latter condition is generic for systems with fin
range of the interactionV. One should stress that, strict
speaking, the BW form~40! is not correct since its secon
moment diverges. As was shown in@20,1#, outside the en-
ergy rangeuẼu.Db the SF in the model~39! decreases with
increasing energy faster than as a pure exponent.

Note, that in the TBRI model the energy scaleDb is irrel-
evant since there is no sharp border of the interaction andDb
is of the order of the whole energy spectrum. For this reas
instead ofDb it is more convenient to use the varianceDE

2 of
the SF, which may have the classical limit@21,23#. The latter
quantity can be expressed through the off-diagonal ma
elements of the interaction,DE

25( jVi j
2 for iÞ j , and there-

fore DE
252bV0

2 . As a result, we haveDb5pDE
2/GBW and

Eq. ~42! can be written as

D!GBW!DEAp. ~43!

Numerical data@28# for the WBRM show that on the
borderGBW'2DE the form of the SF is quite close to Gaus
ian, and this transition from the BW to Gaussian-like dep
dence turns out to be quite sharp. Although the extreme l
of a very strong interaction,q@1 ~or, the same,GBW@DE),
was studied by Wigner in the WBRM~39!, the semicircle
form of the SF seems to be unphysical. Indeed, this fo
originates from the semicircular dependence of the total d
sity rV(E) defined byV only; i.e., when neglecting the term
H0. Thus, the caseV@H0 in terms of the TBRI model mean
that the residual interaction is much stronger than the me
field partH0, which is physically irrelevant.

Numerical data for the WBRM in the case of the B
dependence of the SF are given in Fig. 10. When compa
with the corresponding quantities discussed above for
TBRI model~see Fig. 6! we should note the following. Firs
of all, one can see that the simple analytical expression~28!
gives a correct description of the increase and saturatio
the entropyS(t). We can say the same about the express
~38! for the number of principal components defined throu
the inverse participation ratio.

Second, we would like to stress that the global time
pendence for all quantities is quite similar to that found
the one-class variant of the TBRI model. The relative
simple structure of the Wigner band random matrices allo
one to perform a detailed comparison of the data with a
lytical estimates. Indeed, the application of the relation~33!
for the WBRM model gives

D2~ t !5
2

3
t2V0

2b3, ~44!
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see also Ref.@19#. Therefore, for the parameters of Fig. 1

we haveD(t)5Bt with B5A2
3 b3/2V0'950, which is in

good agreement with numerical data. We can also find
critical time td after which the ballistic spread of the pack
terminates. For this, we estimate the maximal widthDm of
packet via the widthDE of the SF,Dm'A2DE . This leads to
the estimatetm'A6/b, and therefore for Fig. 3 we havetm
'21, which corresponds perfectly to the data. These e
mates have also been checked for other values ofV0 andb,
with the same good correspondence between simple
mates and numerical data.

Comparing the global time dependence of the quanti
presented in Fig.10 with the results for the TBRI model~see
Fig. 6!, one can see that the main difference is the type
oscillations for the width of packetsD(t). That is, in contrast
to the TBRI model where the period of oscillation is mu
larger than the time scaletm of the ballistic spread, in Fig. 10
the periodT is just defined by the ballistic spread,T'2tm .
This very fact demonstrates the principal difference betw
the two models.

Indeed, for the WBRM there is no specific evolution
the Fock space due to the two-body nature of the interact
Formally, the cascade model can be applied to the WBR
with the number of classesnc51, since all states within the
energy bandDb5bD start to be involved in the dynamic
immediately. This means that, in contrast to the TBRI mod
in the WBRM there is only one mechanism for the oscil
tions, namely, the reflection inside the energy shell tha
populatedergodically, when time is running. No oscillation
are detected for the number of principal components~the
data for larger times are not shown!; this confirms our con-
clusion about one kind of reflection from the edges of t

FIG. 10. Time dependence of the entropyS(t) ~in the inset!, the
width of the packetD(t), and the number of principal componen
l ipr(t) for the WBRM for the case of the BW form of the SF. Th
parameters areN5924,b5110,D51.0,V051.0, and correspond
ingly GBW'6.28, DE'14.8. Solid curves forS(t) and l ipr(t) are
numerical data, dashed curves represent analytical expressions~28!
@for S(t)] and ~38! ~for l ipr). Diamonds, connected by the soli
line, correspond to numerical data forD(t).
0-11
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energy shell. It is interesting to note that the number of pr
cipal components does not reveal noticeable oscillations
the time scale of the ballistic spread since on this scale
value ofNpc is very small.

The difference between these two models can also be
when comparing the structure of wave packets in the b
representation at some time instants before the satura
~compare Fig. 11 with Fig. 7!. In contrast to Fig. 7 where
many ‘‘holes’’ can be realized in the distributionwf , for the
WBRM the filling of the available energy range of size 2bD
occurs ergodically. In both cases very strong fluctuations
present, which are expected to be Gaussian~see discussion in
@8#!. It is important to stress that in order to reveal this d
ference we should avoid the ensemble average which wa
out the presence of holes~if different Hamiltonian matrices
have different unperturbed spectra!. This fact reflects one o
the basic peculiarities of the TBRI, namely, the nonergo
character of the matrices@the average over the spectrum i
side one~very big! matrix may give a completely differen
result from that obtained by an ensemble average; see r
ences in the review@30#!#.

Finally, we present the data for the WBRM in the case
the Gaussian form of the strength function~see Fig. 12!.
Here we can also see oscillations in the width of packets
for the number of principal components found from the
verse participation ratio, numerical data manifest the osc
tions, as well, with the same period as for the width of pa
ets. In average, the numerical data forS(t) and l ipr are well
described by the simple analytical expressions relating th
quantities to the probabilityW0(t) of staying in the initial
state.

The most interesting result that can be drawn from
numerical data presented in Fig. 10 and Fig. 12 is a c
difference in the time dependence of the entropyS(t). Com-
paring the data in the insets, one can conclude that a lin
increase of the entropy occurs for the case when the form
the SF is close to Gaussian, but not for the case of the
form. Indeed, it is hard to indicate a clear time scale of

FIG. 11. Wave packetWn(t) for the WBRM at different times
t50.01, 0.02, 0.04, 5.0 for the parameters of Fig. 10. One partic
band random matrix is used without any additional average.
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linear increase ofS(t) in Fig. 10, in contrast to Fig. 12 wher
the linear time dependence is clearly seen~apart from the
very small time scale!. This very fact may be quite generic
since in the TBRI model we also see a nonlinear characte
the entropy increase in the BW regime.

VIII. CONCLUSIONS

In conclusion, we have studied the evolution of clos
Fermi systems by making use of the standard model w
random two-body matrix elements. Our main interest is
the dynamics of packets in the unperturbed energy repre
tation, for the case when initially only one basis state
excited. The problem of the spread of the energy due to
interaction between particles is important in many physi
situations, such as complex atoms and nuclei, metallic c
ters, and spin systems.

First, we briefly discussed the simpler question of t
probabilityW0(t) of finding the system in an initial state. A
is known, the time dependence of this quantity is entir
determined by the spreading function which is also known
solid state physics as the local density of states. Typica
this function is assumed to be of the Lorentzian formL
regime!; however, in our two-body random interaction mod
it depends on the interaction strength, and for a relativ
strong interaction between particles it is close to Gauss
(G regime!. This situation was found to be typical in com
plex nuclei@3# where the residual pseudorandom interact
is quite strong.

In order to analyze the dynamics of our model for a
interaction strength, we suggest a phenomenological exp
sion for the SF that interpolates between the Lorentzian
Gaussian and depends on a few control parameters of
model. This expression allows one to find the time dep
denceW0(t) in both theL andG regimes~see details in@27#;
one should also note that the problem of a long-tim

ar FIG. 12. The same as in Fig. 10 for the case when the form
the SF is close to Gaussian. The parameters areN5924, b5110,
D51.0, V053.0, and correspondinglyGBW'56.5,DE'45.5.
0-12
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asymptotic for decay of a single-particle state was rece
considered in@34#!.

It is a much more difficult problem to find global chara
teristics for the evolution of wave packets. For this, o
needs to know the time dependence for all probabilit
Wf(t). To treat this problem analytically, we suggest
simple cascade model that describes the dynamics of ex
tion in the Fock space of the system. This model is based
the fact that any given basis state interacts not with all b
states but with those that are directly coupled by a two-b
interaction. As a result, it is more convenient to describe
excitation in terms of subclasses that are defined by the t
body interaction.

The cascade model allows us to find an analytical solu
for Wf(t) for a large number of particles, by neglecting t
reverse energy flow. Using the expressions obtained, we h
studied some important quantities that characterize the gl
dynamics of the wave function.

First we analyzed how the entropyS(t) of the system
increases due to the spread of packets in the unpertu
basis. For this, we used the standard definition of the Sh
non entropy of wave packets, expressed by Eq.~17!. Al-
though the entropyS(t) depends on the basis, it gives im
portant information about wave packets~which also depend
on the chosen basis!. Indeed, this entropy can be used to fi
the effective numberNpc; exp@S(t)# of principal compo-
nents presented in the wave packet. It should be pointed
that the Shannon entropy of stationary eigenstates in s
cases may be directly related to the thermodynamical
tropy ~which is known to be basis independent!; see, e.g.,
@35# and references therein.

For small times the increase of entropy in our model w
found to have quadratic time dependence,S(t);t2, which
seems to be generic. The most interesting question is a
the time dependence ofS(t) on the large time scale befor
the saturation of wave packets. One of the most interes
results we found is that the increase ofS(t) turns out to be
different depending on the form of the strength function
was found that in theG regime the entropy increases linear
in time on a large time scale. The simple analytical estim
.

J.

.

um

03622
ly

s

ta-
n
is
y
e
o-

n

ve
al

ed
n-

ut
e

n-

s

ut

g

t

te

of S(t) obtained from the cascade model agrees perfe
with direct numerical computations.

It is important to note that the linear increase ofS(t) was
recently revealed in classical dynamical systems with cha
behavior@32#. The rate of entropy increase was numerica
found to be defined by the Lyapunov exponent that char
terizes the exponential divergence of close trajectories in
phase space. Note that our model has no classical limit
this respect, it is very interesting to understand whether th
is any connection between these two facts.

Analogously, we have studied the time dependence of
width of wave packets, determined via the second mom
and the inverse participation ratio, which is widely used
the estimate ofNpc . Our analytical expressions give goo
agreement with numerical data, in spite of the relative
small number (n56) of particles. This means that the simp
cascade model gives an adequate description of the evolu
of wave packets in the unperturbed basis of many-part
states.

The numerical study has revealed a quite interesting p
nomenon of periodic oscillations for all quantities discuss
above. We showed that these oscillations are due to the fi
number of classes in the cascade model, which is a co
quence of the finite size of the Fock space. Simple estim
based on the cascade model with finite Fock space give
correct value for the period of these oscillations. It is int
esting to note that in the basis representation these osc
tions are reflected by a periodic change of the sparsity
wave packets and may be observed in real physical syste

Finally, we performed numerical experiments with the s
called Wigner band random matrices which have been s
ied recently in great detail in connection with chaotic co
servative Hamiltonian systems@19,21–24#. Comparison with
the two-body interaction model has shown to what extent
dynamics of the wave packets is similar.
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