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Highly excited many-particle states in quantum systems such as nuclei, atoms, quantum dots, spin systems,
guantum computers, etc., can be considered as “chaotic” superpositions of mean-field basisS&ites
determinants, products of spin or qubit statd4his is due to a very high level density of many-body states that
are easily mixed by a residual interaction between particjeasiparticles For such systems, we have derived
simple analytical expressions for the time dependence of the energy width of wave packets, as well as for the
entropy, number of principal basis components, and inverse participation ratio, and tested them in numerical
experiments. It is shown that the energy widtft) increases linearly and very quickly saturates. The entropy
of a system increases quadraticafijt) ~t?, at small times, and afterward can grow linead{t) ~t, before
saturation. Correspondingly, the number of principal components determined by the eMyropgxd S(t)] or
by the inverse participation ratio increases exponentially fast before saturation. These results are explained in
terms of a cascade model which describes the flow of excitation in the Fock space of basis components.
Finally, the striking phenomenon of damped oscillations in the Fock space at the transition to equilibrium is
discussed.
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[. INTRODUCTION states that are directly coupled by a two-body interaction.
When the interaction is very weal(,<<d;, exact eigenstates
Highly excited many-particle states in many-body sys-are §-like functions in the unperturbed basis, with a very
tems quite often can be presented as “chaotic” superposismall admixture of other components which can be found by
tions of shell-model basis states; see recent calculations fahe standard perturbation theory. With an increase of the in-
complex atomg 1], multicharged iong2], nuclei[3], and  teraction, the number of principal componeNts; increases
spin system$4,5]. The origin of this phenomenon relates 0 and can be very largdy,.> 1. However, if the interaction is
a very high density of mar_1y—particle energy levels, whichg;i not too strong,q-r‘z\/df_D<V0$df [8] , the eigenstates
Increases draSt'Ca”y .W'th ncrease O.f energy. Ind_eed, thﬁre sparse, with extremely large fluctuations of components.
numberl\_l of 9omb|nat|on§ n _the ,fj'St.”bUt'on Oi particles In order to have ergodic eigenstates that fill some energy
(or quasiparticlesover m “orbitals” (single-particle states range (see beloy, one needs to have a sufficiently large

is exponentially largd N~m!/n!(m—n)! in a Fermi sys- : . .
tem] %hereforey theggpacirig bet(vveen )many—body Ieve);s is perturbationVy>d; (for a large number of particles this tran-
. ' sition is sharp and, in fact, one needs the weaker condition

exponentially small and a “residual” interactiovi between
the particles can mix a huge number of the basis states of th\éﬂzdf)'
mean fieldH, (Slater determinantswhen forming exact ~ APove the threshold of chaog,=d;, the number of
eigenstates of the total Hamiltonidi=H,+ V. principal basis components in an eigenstate can be estimated
The onset of chaos for highly excited states, as well as fofSNpc~1'/D wherel" is the spreading width of thetrength
many-particle spectra, has recently been studied in great déunction In such chaotic eigenstates any external weak per-
tail in terms of the two-body random interactidiiBRI) turbation is exponentially enhanced. The enhancement factor
model, which was invented about three decades[8§dn  can be estimated agN,.=1/\D; see, e.g.[15] and refer-
this model alltwo-bodymatrix elements are assumed to be€nces therein. This huge enhancement has been observed in
independent and random variables, and therefore all dynamipumerous experiments when studying parity violation effects
cal correlations are neglected. Thus, the TBRI model is esih compound nucle(see, for example, the reviet6]).
sentially the random matrix model; however, it differs from  In recent wor17,18 the theory of many-body chaos has
standard random matrix models where the two-body natureen extended to quantum computers. Since in this case the
of the interaction is not taken into accousee, e.g[7—12)).  density of energy levels is extremely high, it is often impos-
One of the important results obtained recenlg] in the  sible to resolve particular many-body levels. This happens
framework of this model is the Anderson-like transition thatfor the injection of an electron into a many-electron quantum
occurs in the Fock space determined by many-particle stated#ot, for the capture of an energetic particle by a nucleus or
of Hy (see alsg14]). The critical valueV,, for this transition ~ atom, or for different models of quantum computer with a
is determined by the density of staies=d; * of those basis large number of interacting qubitsping. In this case the
approach based on the study of stationary chaotic eigenstates
turns out to be inadequate, and one should consider the time
*Email address: flambaum@newt.phys.unsw.edu.au evolution of the wave function and entropy8].
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In contrast to the study of spectra and eigenstates, analysis The probability Wy=|Ag|2=[(0| ¥ (t))|* of finding the
of the evolution of wave packets in random matrix models issystem in the initial state is determined by the amplitude
based mainly on numerical results. First, one should mention
the numerical study19] of band random matrices that de- _ )12 -
scribe quasi-one-dimensional disordered models with a finite A0=(O|exp(—|Ht)|0)=Ek |Co”|* exp(—iEMY)
number of channels. Recently, attention has been paid to the
so-called Wigner band random mod&/BRM) [20], which )
is used in the study of generic properties of strength func- :f dE Po(E)exp(—iEt). 4
tions in dependence on the strength of the interaction

[21,23. In particular, in Refs[23,24 the problem of the ere e replaced the summation over a large number of
guantum-classical correspondence for the time evolution Oéigenstates by an integration over their ene@%c_(k) and
wave packets was under close study. We note that thg . quced thestrength function(SP Po(E) which is also

WBRM serves as a convenient random matrix model fofnq\yn in the literature as thecal spectral density of states
different quantum systems, and in many aspects can be COMpOS):

pared with the TBRI mod€l25].

In this paper we study generic properties of the evolution
of wave packets in the energy shell, paying most attention to
the time dependence of the entropy, the width of the packets,
and the inverse participation ratio. We derive analytical estiwith p(E) as the density of exact eigenstates.
mates for these quantities and check our predictions numeri- AS one can see, the probabili¥y, is entirely determined

Po(E)=|C{I|%p(E), (5)

cally using the TBRI and WBR models. by the strength functioits). It is well known that in many
applications this function has the Breit-Wign@W) form
MANY-BODY STATES In our casep=p; is the density of directly coupled basis

. states andH?=|H|? is the variance of the nonzero off-
Exact (“compound”) eigenstatesk) of a many-body giagonal elements o4, defined by the residual interactidh
HamiltonianH=H,+V can be expressed in terms of simple one should recall that in real situations the second moment
shell-model basis stat¢f) (eigenstates ofo), or by prod- AZ of the SF is always finite due to the finite range of inter-

ucts of qubits in the model of a quantum computer: action in the energy representation. Therefore, the Breit-
Wigner form of the SF can occur for a finite energy range

|k>:E cfy; |fy=al ,...al |*vacuum”). (1)  only, determined by the energy width of the interaction.

f ! " However, it was recently showisee, e.g.[8,11] and ref-

+ ] . o ) erences therejrthat if I'y defined by the above expression is
Here ag are creation or spin-raising operatdis the latter  of the order of(or larger thah the mean-square-root width
case, the ground stafeacuum corresponds to the situation A of the SF itself, the form of the SF in the TBRI model is
with all spins down, andC{ are components of compound very close to Gaussian. Strong deviations of the SF from the
eigenstate$k) formed by the residual interaction BW dependence have been observed numerically when
In what follows, we consider the time evolution of the studying the structure of the SF and eigenfunctions of the Ce
system for the case when the compound eigenstateshare  atom [1]. Also, numerical datd3] have revealed that the
otic. By this term we mean that the number of principal form of the SF in nuclear shell models is much closer to
components is very largeyN,.>1, and the components Gaussian rather than to the BW form. This results from the
C%k) can be treated as uncorrelated amplitudes with a Gaus$act that the three orbitals, ds,, and ds, included in
ian distribution around their mean valuee details if8]). nuclear shell-model calculatid] have close mean-field en-
Let us assume that initiallyt €0) the system is in a specific ergies and the residual interactivinplays the dominant role
basis staté0) (with certain orbitals occupied, or, in the case in the Hamiltonian matrix.
of a quantum computer, when the state with certain spins Recent analytical resul{d1] for the TBRI model allow a
“up” is prepared. This state can be presented as a sum ovedescription of the whole transition for the SF from the BW
exact eigenstates of the total Hamiltonidn regime to that of the Gaussian. This model is characterized
by two-body random matrix elements which determine the
residual interactiolvV betweem Fermi particles occupyinm

= (k)
10) EK Co”lk). 2) orbitals(single-particle statgssee details and references, for
example, in8,25]. It was shown that in the general case the
Then the time-dependent wave function reads as SF is given by the following approximate expressjas, 11]:
_ () (k) _ig® 1 I'(E)
W (t) ; CHICH|fyexp —iEM). (3) Po(E)= — ®)

27 [Eg+ 5o(E)—E]2+T2E)/4

Here the sum is taken over the compound stitaad basis
statesf, and we sefi=1. ['(E)=2|H|?p+(E). (7)
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One can see that the general express@ns of the Breit- 0.0 ==
Wigner form, but with'(E) as some function of the total In Wy(t)
energyE. Here §3(E) is the correction to the unperturbed
energy levelE, due to the residual interactiol, andp;(E)

is the density of those basis statdy that are directly
coupled by the interactiohly; with the initial state|0). It 0.1
was showr{11] that for the TBRI model the functioh (E)

has the Gaussian form with a variance that depends on the .
model parameters. In the case of a relatively srifait non- 0.15¢ ]
perturbative interaction, T'y=2mp;H?<Ag, the function A
I'(E) is very broad(i.e., it does not change significantly

-0.05

02 & — e

within the energy intervals-TI" and Ag) and can be treated 0.0 0.1 0.2 03 04
as a constant]'(E)=T"g. In the other limiting case of a
strong interaction]”y=Ag, the dependencE(E) in Eq. (6) FIG. 1. Schematic time dependenceWf(t) for I',=0.5A¢

is the leading one, and the slow dependence in the denomi=1.2; the pointt, where the dependend®) is changed tq10) is

nator can be neglected. One should note that the simple ex=I",/AZ~0.17.

pression(7) for the widthI'(E) has to be modified in this

limit; see details ir{11]. Note that only the states directly connected to the initial state
The second momen2 of the SF can be found from the are populated at this time scale. One can estimate the popu-

equationAézEfioHSf. Here the summation is taken over lation of these states for a larger time by substituting the

the off-diagonal matrix elementd; that couple the initial time-dependent wave functiol (t)=Aq(t) o+ ZA¢(t) o

state|0) with the others/f). For the TBRI model the ana- into the Schrdinger equation,

lytical expression fog has been obtained {i8],

1 Pa DAg+ D Hi(HA 12
A%zzvgn(n—l)(m—n)(m—n+3), (8) g =Hor(DAc+ 2 Hi DA (12)

whereV3 is the variance of the off-diagonal matrix elementsHerek,f#0 andHg:(t)=H g exp(wort). Note that the sec-

of the two-body residual interactioW. In fact, for Fermi  ond term in the right-hand side may be treated as a random

particles the width\ g turns out to be the same for any basis variable with zero mean value. Indeed,<Hg, and there-

state|0). fore Hy(t)Hos=0. The variance of this term is

Let us first start with the probabilitWy(t) of the system =, |H¢ (1) A= [H (D) |22 W A= He(1) [2(1— |Ag|?).

staying in the initial state. In the two limiting cases of small Comparing this with the first term in the right-hand side of

and very large times, the dependeiggis shown[18,27to  Eq. (12), one may conclude that the second term is not very

be of the following forms: important for small times whem\y(t)~1. Neglecting the
second term and assumingq(t)|= exp(—I't/2), which is

r valid for I'<Ag, we obtain[18]
2.2 P
Wo(t) = exp(—Agt?), t<— 9
- wi=IHa? [ Aot ]e ot
r [Hotl? I
_ p __TTofl o (wes-T/)t_ 1|2
= - >_P e 1|4, 13
Wp(t)=C expl Fpt), t Aé (10) w(2)f+1'*2/4| | (

Herel', is the imaginary part of the pole of the $8ee Eq.  where wy;=E;— E,. This approximate estimate shows that
(6)] in the complex energy plane. In the case when the Sfy the basis states within the energy inter¥alcan be
has the standard BW forii28,29, we have the obvious re- g hstantially populatedif I'>Ag, this energy interval is
lation I'y=T"y where the latter is given by the Fermi golden equal toAg).

rule. In the other limit of a strong interaction, when the SF "o |arge times, the result is different for the perturbative
has the Gaussian form, the expressionlfgris not simple. g1 chaotic regimes. In the perturbative regime the expres-
The transition from one regime of time dependenc®{t)  sjon (13) for w; is the final one. In the chaotic regime the
to the other is schematically shown in Fig. 1. asymptotic expression fdar—o can be obtained in the fol-

Now we estimate the PrObabi”ti%f:|Af(t)|2 offinding  |5ing way. The projection of?'(t) [see Eq.(3)] onto the
the system in other basis states. For a very small time wgi5ief gives

have
we=|(fle M0y [2=|H o] 2t2. (1) we(t) =wi+wi (1), (14)
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FIG. 2. Asymptotic distributionw; for the case when the FIG. 3. Asymptotic distributionw; for the case when the

strength function is of the Breit-Wigner form in the TBRI model. strength function is close to Gaussian. The only difference from
The parameters arre=6,m=12,VS%O.OOS,FOEO.SO,AEwl.la Fig. 2 is the interaction strengthéw0.0SS, and correspondingly
with the average ovel,= 10 matrices with different realizations of I'0~10.5 and Ag~5.8; the average was taken ové;=>50

random two-body matrix elementsee text matrices.
dE n=6 Fermi particles occupyn=12 orbitals and therefore
wi= > |Cgk)|2|C§k)|2zf © Po(E)P4(E) the total number of many-particle statéhe size of the
K P Hamiltonian matrix is N=924. The distribution ofeg is
taken random withdy=1. Two-body matrix elements are
1 Ft . . . .
~ i (15) taken as Gaussian random entries with zero mean and vari-
27p (Eg—Ef)?+(T'4/2)? anceV3, and in order to reduce the fluctuations the distribu-

) ) tion w¢ is obtained with an average over a numidg of
Here the result is written for the case when the SF has thgatrices with different random realizations. Initially, only
BW form for both initial [0) and final statesf) with the  one basis state,=462 was populated at the center of the
corresponding FWHM'4'g andI'j . In this case the resulting energy spectrum, in order to avoid asymmetry of the distri-
form of W? is, approximately, again the Breit-Wigner with pution in the basis representation.

the new FWHMFI:F8+ F{):ZFO. However, if['g=Ag, The two different values 0¥, for which the distributions

the form of w{ is close to Gaussian with the variance ws are obtained are chosen in such a way that in one case

(Ap)2=2A2 [18]. (see Fig. 2 the strength function has the Breit-Wigner form,
The termW;IUCt(t) can be written in the form and in the other the form is very close to Gausﬁﬁig. 3)

We should recall that the above two forms occur in the en-
fuct ok _ ergy representation, but the results are shown in the basis
wit)= > clchciPc? exdi(EW-EP)]. representation. These two representations are related through
kipik#p 1g the density of states which is known to be of the Gaussian
(16 form for large numbers of particles and orbitfs29,30.
One can see that in both cases, Figs. 2 and 3, the prob-

At large time,t—o, the terms in the sum rapidly oscillate _, .~ S L . )
d one can mzo Thus. asvmptotically the dis- ab|I|ty of staying in the original basis gtate is much larger
an putvs ' » asymp y than in the nearest ones. Compared with the result of stan-

tribution of the components in the time-dependent wavgy, g random matrix theory, one can say that there is a no-

function is close to that given by the form of the strengthyceaple differencénamely, the enhancement factor in Fig. 3
function[see Eqgs(5) and(6)], with a slightly larger spread- is about 2.3, instead of 3.0

ing width.
Note that the similar expression fa¥, contains the term
|C{9|*. For Gaussian fluctuations of the compone@fs

one can getcgk)l“ =3 (|Cgk)|2)2, which is the known result One important question is how the entropy of quantum
in random matrix theory29,30. Therefore, if the number of isolated systems increases in time at the transition to equilib-
principal component®,,. in the SF is very large, the prob- rium. Itis natural to define the entropy of a many-body state
ability of finding the system in the initial sta{@) at large  through the Shannon entropy,
times is at least three times larger than the probability of
finding the system in any other stdte (see Figs. 2 and)3 _ .

In these figures the distribution ﬁo? probabilitieg in the S(H)= _Z e Inw;=—Wo '”Wo_go Welnw;.
TBRI model is shown after a very long tine=40 for two (17
different strengths of interactioin fact, the timet is mea-
sured in unitsi/d, whered,= (e, 1— €5) iS the mean level HereWy(t) =|A(t)|? is the probability for the system to be
spacing between single-particle energigy. In both cases in the initial state, andv¢(t)=|A¢(t)|? is the probability to

Ill. THE CASCADE MODEL
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be in the basis statd). In what follows we assume that the Indeed, at small times< r=1/" the system is essentially in
initial conditions araNy(0)=1 andw;(0)=0, and therefore the initial state, at times~ r the flow spreads into the first
the entropy is equal to zero for=0. class, fort=n7 it spreads into theath class, etc. For an
In order to study the evolution of a many-particle systeminfinite chain one can easily check the normalization condi-
with two-body interaction, it is convenient to introduce sub-tion
classes for all basis states in the following way. Tt
classcontains thosé\; basis states that are directly coupled

*° * n
with an initial state by the two-body interaction given by > W,=exp—I't) D, (Ftl) =1. (20
matrix elementdy; of the interaction. Correspondingly, the n=0 n=0 M-
second classonsists o\, basis states that are coupled with
the in_itiall one in the second order of the perturbation; this IV TIME DEPENDENCE OF THE ENTROPY
coupling is determined bify, H ¢, etc.
Let us first consider the evolution for a large tine The above expressions allow us to find the time depen-
>T'/(AE)? (below we assume the BW shape of the.FFor  dence of the entropy,
this case the probabilities of the states in different classes can
be determined by the “probability conservation equations” % W,
dWO S(t) ngo Wn n Nn
T — W, « n n
=TtinM+Tt—e > ﬂln(n) , (21
dw, n=o n! n!
T_FWO_FWI!
wherew;~W, /N, stands for the population of basis states
of the class with N,, as the number of states in this cldss
fact, fort~nr one needs to count only the states inside the
de—FW W, 18 energy shell since the population of the states outside the
dt Tkt ke (18 energy interval with|Eq—Eo|>T is small; see E@13)].

Here we have used the relationgN,=M" and
Sr_ol(Tt)ntIn=Ttexp(t). The two last terms in the

] - ) right-hand side of Eq(21) turn out to be smaller than the
Here W, is the probability for the systems to be in the classgj st one, so one can write

k. The first termI’W, _ in the right-hand side of Eq18) is
responsible for the flux from the previous class, and the sec-
ond termI’W, describes the decay of the states in the dkass
into the next clas&+1. We assume that the probability of
the return to the previous class can be neglected. This is ith some functionf(t)<1 that slowly depends on time.
valid approximation if the number of statdk, ; in the next In this estimate for the increase of entropy, we did not
class is |arge in Comparison Wlﬂklk of the pre\/ious class. take into account the influence of fluctuationsvmff. One
This approach can be compared with those based on the C&an show that, for Gaussian fluctuations of the coefficients
ley tree mode[13] where the flow from each state goes into A¢ With the variance given by their mean-square values, for a
M other states; therefordl,~M¥ with M>1. Note that here large number of principal componeritg(t)= exgSt)] the

we consider a system that is far from equilibrium. Indeed, ifentropy should be corrected by a small factor of the order of
the system is in equilibrium, the probabilities for all statesIn 2 (see, for example[31]).

S(t)~TtInM[1+f(1)] (22)

within the energy shell defined by the relatit; — Eq|<T" If one neglects the second term in Eg2), we obtain a
are of the same ordwszgcl , with N, as the total number linear increase of the entropy, which means that the number

of states inside the energy shell. Therefore, in order to neof principal componentsi, (t) increases exponentially fast
glect the return flux, one needs the conditian=W, /N, with time. This behavior can be compared with the linear

>1/N,. to be fulfilled. increase of dynamical entrof8(t) in classical chaotic sys-
Equations(18) have the simple solution tems whereS;(t) was found to be related to exponential
divergence of close trajectories in the phase sg&:gt)
Wo= exp—TI't), «\t with A as the Lyapunov exponent; see, for example,
[32]]. The nontrivial point is that the linear increase of en-
(repyn (ro" tropy also occurs for systems without the classical limit; see
Wh=——exp(—I't)= ——W,. (19 the recent papéid3).

Note that for a small time the functioiy(t) has the form
The maximal probabilityV/,,= (n"/nexp(—n)~1/27n to  Wy(t) = exp(—AZ?) [see Eq.(9)], not the exponential de-
be in the class determined by the conditiodW, /dt=0 pendence exp{I't) . Therefore, one should modify the ex-
occurs fort=n/T"; therefore, this solutiori19) can be con- pression for the entropy in order to make it valid for small
sidered as aascadein the population of different classes. times. For this, we repladét in Eq. (19) by a more accurate
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expression,— In(W,), which givesAZ2t? for small timest 6 e I A
<T'/AZ andT't for large timest>T/AZ; therefore, S@t) ¢ ]
5 7 /‘ 0000 2000209 2 ©o7
(INWgH" I ’ :
W= ——>—W,. (23) 09 :
n! 4t : 6 F ] 3
. o o - 5E ;
It is easy to check that the normalization condition is fulfilled : n:
again, 3¢ : E
: V‘ 3 ;
” “ (Inwyhn — 2t i
S W= 3 e Wo=Wo exin(Wp ]=1. 2 L
n=1 n=1 n! : :
24 : 0 Ml L b 3
249 1t 00 05 10 15 20 -
For the entropy one obtains 0 | ‘ ‘ | | ‘ | | b
% W 0 2 4 8 10 12 14 16 18 20
s=-3 wnln(—”). (25) t
n=1 Nn

FIG. 4. Entropy versus time for the TBRI model in the case
. 2 L when the SF has the standard Breit-Wigner form. The parameters
At small timest <I'/Ag the entropy is given by two terms are the same as in Fig. 2, with,=2. The circles stand for numeri-

n=0 andn=1 (direct transitions therefore, cal data, the solid curve is the analytical expresgi2#), and the
dashed line represents a linear slope according to the approximate

S(1) = — Wi (1) In Wo(t) — Wy (t)In Wy expression30). In the inset the same is shown for a smaller time
N, scale.
e ™ [1-Wo(D)]
~A2:2 _
~Agt? 1+ In| g ) } (26) S(t)= —Wo(t)InWO(t)—[1—W0(t)]ln(N—0>.
pc
(28)
This expression can be compared with the direct calculation
based on the relatiow;=|Ht|?, This expression takes into account the normalization condi-
tion 2¢.ow;=1—W, and has a reasonable behavior for both
small and large times.
S(t)=AZt2+12>) [Hofl2In| —— | (27)
f Hort V. NUMERICAL RESULTS FOR THE ENTROPY
There is agreement between E@86) and (27) since A2 Now we compare the analytical expressions obtained with

numerical data for the TBRI model. For the case when the
étrength function has the Breit-Wigner form, the time depen-

entropy, including large timeswhen the system is close to dence of the entropy is shown in Fig. 4 for the parameters of

. _ _ 2 D _ .
equilibrium. In a finite system of particles any basis state caff19- 2, N=6,m=12,V~0.003,I'y~0.50,Ag~1.16, with

be reached, starting from an initial state, in several “interac{h€ average oveN,=2 Hamiltonian matrices.
tion steps” HoaHagH g, - -). For example, in a system of The numberM of basis states directly coupled by the

n=6 particles three steps are needed since the two—boi{;‘”dom two-body interaction is determined by the expression

interaction cannot move more than two particles from on ]
basis state to another. If the number of clasgeis finite, the n(n—1)(m—n)(m—n—1)
states in the last class do not decfhere is no term M=n(m—n)+ ’
—I'W,_in the last equation iit18)], and the probability of 4

being in the last class is determined from the normalizationpere the first term gives the number of one-particle transi-
condition W, =1-X%,¢ ;W,. The additional condition is tjons, and the second stands for two-particle transitions. In
that the considered basis states should be inside the energyr case oh=6 particles anan= 12 orbitals, the total num-
interval |E¢— Eg|<min(T",AE), thus limiting the numbeN,,  ber of basis states i8l=924 andM =261. The effective

of the basis states in each class. Note that the valWg,a6  numberof classes in the cascade model can be determined
restricted from below by the equilibrium relatioMV, from the relationM"e=N. This givesn.= In N/In M~1.2.
=N,/Np.. These limitations make an “exact” expression Thus, we can use the simple expressi28) to describe the

for the entropy very complicated. Instead, we can proposelependence of the entropy on time analytically. The data in
the following simple expression which is approximately Figs. 4 and 5 demonstrate excellent agreement between the
valid in systems with a small number of classes~+1): numerical and analytical results.

=3 ¢|Hof|>= Ny HG;.
Let us now discuss the whole time dependence of th

(29

036220-6



ENTROPY PRODUCTION AND WAVE PACKET DYNAMIG . .. PH'SICAL REVIEW E 64 036220

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

S() Z — """" ' : ; — ¢ S(t)=AgtInM (31
5 - (@ 3 5 - (b) - before saturation. It is clearly seen that this analytical esti-
4 1 45 4 3 mate gives a correct value for the slopeSgf). The shift is
3F 3 3F 3 due to the initial time scale where the time dependence is
2E) EREAY E quadratic; this fact is neglected in the estimate.
é 7 e LT é 7 E It should be pointed out that the linear dependenc®(bf

00 02 04 06 08 00 01 02 03 04 05 in Fig. 5 is much more pronounced than in the BW region
¢ ¢ (compare with Fig. 4 for which the SF is of the Breit-Wigner
form). Our results indicate a clear difference between the two
FIG. 5. Time dependence of the entropy for the TBRI modelcases related to the Breit-Wigner and Gaussian forms of the
when the strength function is of the Gaussian fofi@: n=6m SF. This point is supported by recent studi23,24 where it
=12V,~0.083[;~10.5A¢~5.8, and (b)) n=7m=13V,  was shown that, for a relatively weak interactidr s small

~0.12]'y~14.6Ag~8.13. Circles are numerical data fbly=2,  in comparison withA¢) resulting in the Breit-Wigner form
solid curves stand for the approximate express8), and dashed  of the SF, there is no detailed quantum-classical correspon-
lines represent the linear depende/i@®). dence for the evolution of wave packets in the energy space.

On the other hand, in the Gaussian regiaith the Gaussian

We should note that the theoretical dependel(i28) form for the SH, a detailed quantum-classical correspon-
which gives a quite good approximate description of the datalence is possiblE23,24). In the latter case one can expect a
on the whole time scale, has a paramétgg [effective num-  linear growth for the entropy, as was found in classical mod-
ber of principal components in the stationary distributionels [32]. The principal difference between these two cases
wi(t—o0)] that is related to the limiting value of the entropy (concerning the quantum-classical correspondence and the
Npc= In§=). It can be estimated analytically as discussedpossibility of localization in the energy sheivas discussed
above from the width of the energy shell; when plotting thein Ref.[21].
solid curves in Figs. 4 and 5 we have used the exact value
found numerically. , VI. WIDTH OF PACKETS AND INVERSE

To avoid confusion, we should explain that thetual PARTICIPATION RATIO
numberof classes in the case of=6 particles andn=12
orbitals is equal to 3 since all basis states can be populated in The width of the wave function in the basis representation
the third order in the two-body interaction. However, thecan be measured through the variance,
number of states in the secorkds 2, and thirdk= 3, classes
is much smaller than follows from the exponential relation
N,=M¥X (in practice, this relation may be justified for a large A% D)= Ef (ng=ng) | Ai(1)[*=[1=Wo(1)]|A(D)[?,
number of particles only This is the reason why the one-
class formula28) works so well.

It is also instructive to compare the entropy with the linear > (ng—np?As(1)]?
i f
time dependence 1A(1)]2= , 32

Z |Aq(D)]?

S(t)=TtInM (30)

. . : . wheren; andng label corresponding basis statés; 0, and
that stems from Eq22) if the first term only is taken. This e have used the normalization conditiGy|Aq(t)[2=1

dependence corresponds globally to the data on some timé . . . b
scale; however, the actual dependenc&(@j clearly differs ~Wo(t). The functlonlAf(_t)|2 IS a SI‘.)W function of time; it
from ihe Iinear,one(see inset in Fig. ¥ Note that the qua- changes from the effective bandwidth of the Hamiltonian

dratic increase of energy occurs on a very small time scal at][.lx, Ien_t(ljrter:y fdtehtermlned byktrlg Tﬁt”t): e!emeht§f, t? i
only. As for the oscillations of the entropy for a very large € inal width of the wave packet in the basis representation,

time close to equilibrium, this phenomenon will be discussed?NiCh is defined by the width of the energy shelbproxi-

below. mately.qual to\/fAE). Therefore, the leading time depen-
For a strong interaction, when the form of the SF is verydence is given by the term-1Wo(t). .

close to Gaussian, numerical data are reported in Fig. 5 for FOr refatively small tlmeszbefo_re saturation, we can use

n=6,m=12 and forn=7,m=13. The interaction strength ("€ Simple estimatev;~|Ht|, which results in the follow-

is chosen in order to have the same rdfid A,~1.8 as in N9 quadratic dependence:

Fig. 4.
In this case the FWHM of the strength function is deter- A2(1)~t2D) (ni—ng)2H2 =t2V2A2. (33)
mined by Ag sincel“0=27rpr§f is larger thanAg. As a f or Tof =0

result,I" in the expression&2) and(28) plays the role of the
width Ag . In both cases numerical data give strong evidenceédere A is some constant related to the effective bandwidth
of a linear increase of the entropy of the Hamiltonian matrix. The linear dependence of the
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width of the packetA(t)=tVyA,, corresponds to the ge-
neric ballisticlike behavior of wave packets found for the
WBRM model[23].

Note that the bandwidth of the Hamiltonian matrix can be
much larger than the final width of the wave packet due to
the dependence of the latter on the interaction strength.
Therefore, the linear increase &ft) can be very fast, and it
quickly becomes saturated on the time scale of the applica-
bility of the expansion irHt; see Eq(33). 1

Before comparing the expressions obtained with numeri-
cal data, let us first analyze the time dependence of the num-

ber of principal components(t) for wave packets in the
basis representation. It is natural to defidg. through the
entropy,Np¢(t) = exd S(t)]. This definition has been widely
used in different applications; see, for exampid].

The number of principal components can also be defined

through the inverse participation ratig, :

W
-1_ 4__
(lip) 1= 2 [A*~ 2§

(In W0—1)2|(
KIKIN,

~W5> (34)
K

Here we used Ed23) for W,.. The sum in Eq(34) gives the

following result for the infinite number of classéhis may

be a reasonable approximation for tie€n,r):

|

2 In(Wy 1)

WM

[Iipr<t>]1=vvélo< (35)

FIG. 6. Time dependence of different quantities for the TBRI
model in the case of the BW form of the strength functions. The
parameters are the same as in Fig. 4, Wh=2. Circles stand for
numerical data foN,.= ex{ St)] with S(t) taken from Fig. 4, dots
correspond to the analytical expression Fgy(t) with S(t) from
Eq. (29), triangles represent numerical data for the widitt), and
squares are numerical results fo(t). The width A(t) on a
smaller time scale is shown in the inset.

This expression takes into account the normalization condi-
tion 2¢.ow;=1—W, and has a reasonable behavior for both
small and large times.

In any system with a finite number of particles the energy
shell contains a finite number of basis states. For a stationary

wherely(z) stands for the modified Bessel function and wechaotic state the number of principal components is esti-

used the relatioN,=M".
This expression has the following asymptotics:

1
[ipr (D] 1 =W3| 1+ N—1<Invvol)2)

~1—2t2(AE)2( 1+ L (36)
Ny
for small time, and
[l (t)] 1= exp{—ZF(l—i)tl (37
Pr M

for large time. ThereforeN,. defined through the inverse
participation ratid;,, may also have an interval of exponen-
tial increase in timgif the number of classes, is not small
and we can extend the summation ovein Eg. (34) to
infinity ]. Here we again neglected the fluctuationsAg{t)
which may increase the value tﬁ,} by up to a factor of 3.

mated asNEtC~F/D where D is the mean energy distance
between many-particle levelswe assume here that the
spreading widthl" of exact eigenstates is less thAg). In

the nonstationary problem this leads to the saturation of
Npo(t) to the valueNp()=2Nj, and to the maximal
value S~ In Ny(=) for the entropy(see above and in Ref.
[18]).

Numerical data for the TBRI model for the case when the
SF is of the Breit-Wigner form are summarized in Fig. 6 for
the same parameters as in Fig. 2 and Fig. 4. Three quantities
are plotted here: the width (t), the number of principal
componentsN,,o(t) = exd S(t)], and I, (t) =[Z|A¢(t)[*]*
determined by the inverse participation ratio. Rgy(t) two
curves are given; one is due to the analytical expresgén
for the entropy, and the other is computed directly from the
evolution of the TBRI model, with an additional average
over Ng=2 number of realizations of the random Hamil-
tonian.

From the reported data one can see that the time depen-
dence of the widthA(t) of the packets is quite simple,
namely, on the first very short time scale the increase of the

For a system with a small number of classes one caigth is linear in timgsee also the inset in Fig. 6 whesét)

suggest the approximate expression

(1-Wo)?

—1_\p2
[Iipr(t)] l_WO+ |ipr(oc) '

(38)

is shown on this time scaleand afterward the width quickly
saturates. This behavior is in correspondence with the ana-
lytical estimates discussed above, and with numerical results
found in the WBRM[23].
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001 L t=0.2 loo1 L t=0.4 b 100
[ ] [ | 1ipr(t)
Wr | 10 ] 80
: 1o | 60
0.0 bttt tohpiehamttnn 0.0 MWMMWWM a0k
0 200 400 600 800 0 200 400 600 800
0.01 _ t=0.6 _:0.01 _ t=0.8 _ 20
0
] . FIG. 8. Time dependence bf,(t) for the parameters of Fig. 6

on a larger time scale for one Hamiltonian matrix. The solid curve
0 200 400 600 ¢ 800 0 200 400 600 ¢ 800 stands for numerical data, and the dashed curve corresponds to the
analytical expressiof38).

FIG. 7. Wave packetv(t) for the TBRI model at different
timest=0.2, 0.4, 0.6, 0.8 for the parameters of Fig. 6. One particuing the whole time of the ballisticlike spread. These gaps
lar Hamiltonian matrix is used without any additional average. reduce the number Of prlnC|pal Componentsy however, they

are not important for the calculation df(t) [see Eq.32)].

In contrast to this time dependence, the increase of the An important peculiarity of the wave dynamics is that
number of principal component,(t) is very different, initially all basis states of the first class are excited. One can
both for N,(t) defined by the entropy and fdy, (t) deter-  see that for a very small time=0.2 the whole available
mined by the inverse participation ratio. Indeed, biih(t) region 1<f<N is filled with approximately the same ampli-
andl;p(t) increase slowly in time before saturation to their tudes w;=|Hq;t|2. With increase of time, the amplitudes
limiting values. The absolute difference between these twgrow and form the envelope of the packet, in accordance
quantities is not important since the definitionl gf is given  with Eq. (13). One should stress that the quadratic time de-
up to some factor that is sensitive to the type of fluctuationpendence for the second moment of a packet on this short
in A¢(t). As we already noted, the Gaussian fluctuations detime scale occurs not due to a linear spread of the front of the
crease the value dfy,, by the factor 3. wave packet, but due to a specific growth of the amplitudes

One of the most interesting facts that can be drawn fronof those basis states that are located inside the energy shell.
these data is the big difference for characteristic time scales The remarkable effect is a kind of oscillation for all quan-
that correspond to saturation. Indeed, if the widitt) com- tities of Fig. 6. Similar oscillationgalthough not so strong
pletely saturates at time~0.5, bothN,,. andl;,, manifesta  are also present in the time dependence of the ent8§py
very slow saturation by the time=20. This means that the (see Fig. 4. Since the period=~6.5 of these oscillations is
mechanism for the width increase is different from that re-much larger than the time scale-0.5 of the ballistic spread
sponsible for the increase of the number of principal compoef wave packets, it is clear that this effect is entirely related
nents in the wave packet. to the dynamics in the Fock space formed by different

To explain this phenomenon let us consider the initialclasses. The origin of these oscillations can be explained in
time scale for the time dependenceNf. andl;,,, where terms of the cascade model discussed in Sec. lll. Indeed, one
one can detect an approximate linear increase of the entroman expect a strong effect ofreflectiondue to the finiteness
S(t). The very point is that at small timass7 the wave of the Fock space. The first reflection occurs foy
function has a large number of holes since only directly con=~n.(I'y) ~*; therefore, the period of oscillation B~ 2t,.
nected basis states are populated. For a system with a lar@ne can see that this estimate gives the correct result for
numbern of particles the fraction of these states is exponenwith n.~1.5. This value is close to our rough estimate
tially small [ ~ exp(—=n)] due to the two-body nature of the ~1.2 for an effective number of classes.
interaction. With increase of time, fa=r=I" ! the states To compare the data fdg,, defined by the inverse par-
in other classes start to be filled and the holes begin to digicipation ratio with the analytical expressi¢88), we have
appear. This stage faxn,7 corresponds to the exponential plotted separately both results for a larger time st&ld0 in
increase of the number of principal components and the linFig. 8. One can see that our estimé&s®) gives a quite ac-
ear increase of the entropy. curate description of the data on a large time scale up to

It is instructive to analyze the evolution of wave packets~20. After this time, saturation occurs and all local time
on the smaller time scale of the ballistic spread; see Fig. 7dependence may be treated as fluctuations around the limit-
These data confirm theoretical expectations according tong value. The data presented in this figure give strong evi-
which at small times only those basis states that belong to theéence of the effectiveness of our analytical approach.
first class are involved in the dynamics. Indeed, large gaps Let us now come to the case when the form of the
are clearly seen in the distribution wf;, which persist dur-  strength function is close to Gaussian. In Fig. 9 one can see
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TBRI model. It consists of two parts, one of which is a

600 diagonal matrix with increasing “energies; and the other

500 a band matrixvj; ,

400 Hij=ej5i]-+Vij, (39)

300 ‘ whered;; is the delta function. In the original papd20] the
“unperturbed spectrum” was taken in the form of the

200 “picket fence,” €;=|D, whereD:pgl _is the spacing be-
tween two close energies apds a running integer number.

100 We consider here the case with random valgewith mean
spacingD, reordered in an increasing way, ;> €. As for

000 the off-diagonal matrix element; , they are assumed to be

Gaussian, random, and independent variables inside the band

FIG. 9. Th quantities as in Fig. 6 for a strong 'nteract'orli ~j|=b, with the zero mear{V;;=0) and varianceV
. 9. The same quantiti in Fig. i ion_, 2 . . .
with the Gaussian form of the SF. The parameters for the TBRI_ Vo Outside the band, the matrix elements vanish. Thus,

model are the same as in Fig@@s n=6, m=12, V4~0.083,T" the. Colntr0| paralmeters of '[T]IS model ?re tlhe rM‘WD of % h
~ 10.5, Ag~5.8. Solid curves correspond to numerical data,typlca matrix element to the mean level spacing, and the

dashed curves stand for the corresponding analytical expressiof@nd widthb. As one can see, the first term in EQ9)
Eq. (38) for I;5,(t) and Eq.(28) for S(t) in the definitionN,(t) corresponds to a “mean field™,, and the interactioV has

= exS(t)]. a finite energy range.
The SF for the WBRM was analyzed in Rg€20]. It was

that the analytical expressions connecting the probabilitpnalytically found that the form of thezstzrength function es-
W,(t) of staying in an initial basis state with the time depen-Sentially depends on one parameger pgVo/b only. Wigner
dence of the number of principal componeni,(t) provgd_[ZO] that for a relatively strong_perturbatu_)lb>D in

= exfS(t)] and;,,(t) give a correct global description of the limit <1 the form of the LDOS is Lorentzian,

the numerical data. When compared with the previous case

of the BW form of the SHsee Figs. 6 and)8ne can con- W, w(E)= i Iaw
clude that for a strong interactigwhen the Gaussian depen- B 2m -, 1, '
dence for the SF emergethe behavior of all quantities does E°+ ZFBW
not reveal strong oscillations. This effect is related to the fact

that the time scale for the saturation of the width of packetsvhich nowadays is known as the Breit-Wigner dependence.

is of the same order as that for the saturation of Bgfhand ey the energ refers to the center of the distribution. The

lipr - In such a case the effect of reflection in the Fock spaceg\yHm Ty Of the distribution(40) is given by the Fermi
is suppressed by the strong spread of packets in the energyiden rule

shell.
One can see, that there is a quite strong difference in the rszzﬂpovg, (41)
time dependence of all quantities discussed above for the two
extreme cases of the Breit-Wigner and Gaussian forms of thim the other limitg>1 the influence of the unperturbed part
strength function. In the BW case the two effethsllistic-  H, can be neglected and the shape of the SF tends to the
like spread of packets and cascadelike evolution in Foclkshape of the density of states of the band random m¥frix
spacg have very different time scales, and both these effectsvhich is known to be a semicircle.
can be distinguished in the dynamics. Contrarily, in the sec- Recently, Wigner's results have been extendefR®] to
ond case of the Gaussian form of the SF, the two time scalamatricesH with the general form o¥, when the variance of
are comparable. Therefore, the two effects coexist on théhe off-diagonal matrix elements decreases smoothly with
same time scale and, as a result, the global time dependentte distancer =|i —j| from the principal diagonal. In this
turns out to be much simpler. case the effective band siteis defined by the second mo-
ment of the envelope functiof(r). Another important gen-
VII. COMPARISON WITH WIGNER BAND eralizgtion of the WBRM §tudied irﬁ2.2]. is an qdditional
RANDOM MATRICES qursﬂy of the matrin/, which may mimic realistic Hamil-
tonians. In such a form, the WBRM is closer to the TBRI
In this section we discuss numerical results obtained fomodel; however, in the latter the sparsity of the interaction is
the WBRM model for the same quantities as consideredlue to the two-body nature of the interaction. As a result, the
above. The dynamics of wave packets in this model has bequositions of zero elements are not completely random as in
studied recently if23] in connection with the problem of the WBRM,; see details ifi7,9].
guantum-classical correspondence. Here, instead, we concen-Random matrix models of the typg@9) are very useful
trate our attention on the correspondence between the evoléer understanding the generic properties of the SF. The con-
tion of packets in the WBR and TBRI models. dition for the SF to be of the BW form in the WBRM has the
As was mentioned, the WBR model is quite close to thesimple form[22]

E=E-Dj, (40
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D<1—‘BW<Ab! Ab:bD. (42)

The left part of this relation indicates the nonperturbative
character of the interaction, according to which many unper-

turbed basis states are strongly coupled by the interaction.
On the other hand, the interaction should not be very strong,

namely, the widtH 5,y determined by Eq41) has to be less
than the widthA, of the interaction in the energy represen-
tation. The latter condition is generic for systems with finite
range of the interactiol. One should stress that, strictly
speaking, the BW forn{40) is not correct since its second
moment diverges. As was shown [i#0,1], outside the en-
ergy rangd E|>A,, the SF in the mode(39) decreases with
increasing energy faster than as a pure exponent.

Note, that in the TBRI model the energy scalgis irrel-
evant since there is no sharp border of the interactionfgnd

is of the order of the whole energy spectrum. For this reason,

instead ofA, it is more convenient to use the variansg of
the SF, which may have the classical lif2tL,23. The latter

05 |

t

04
t

FIG. 10. Time dependence of the entrdff) (in the inse}, the

05

. width of the packetA(t), and the number of principal components

quantity can be expressed through the off-diagonal Matrix, ' (t) for the WBRM for the case of the BW form of the SF. The

elements of the interactiom\g==,;V{; for i #j, and there-
fore AZ2=2bV3. As a result, we have\,= wAZ/T sy and
Eqg. (42) can be written as
D<lgyw<Ag\w. (43)
Numerical data[28] for the WBRM show that on the

borderl' g~ 2Ag the form of the SF is quite close to Gauss-
ian, and this transition from the BW to Gaussian-like depen

dence turns out to be quite sharp. Although the extreme limi

of a very strong interactiomg>1 (or, the samel g\ Ag),
was studied by Wigner in the WBRNB9), the semicircle
form of the SF seems to be unphysical. Indeed, this for

originates from the semicircular dependence of the total den-

sity py(E) defined byV only; i.e., when neglecting the term
Ho. Thus, the case>H, in terms of the TBRI model means
that the residual interaction is much stronger than the mea
field partHg, which is physically irrelevant.

Numerical data for the WBRM in the case of the BW

dependence of the SF are given in Fig. 10. When compared
with the corresponding quantities discussed above for th

TBRI model(see Fig. & we should note the following. First
of all, one can see that the simple analytical expres&8n

gives a correct description of the increase and saturation d . L .
orl his very fact demonstrates the principal difference between

hthe two models.

the entropyS(t). We can say the same about the expressi
(38) for the number of principal components defined throug
the inverse participation ratio.

Second, we would like to stress that the global time de
pendence for all quantities is quite similar to that found for
the one-class variant of the TBRI model. The relatively
simple structure of the Wigner band random matrices allow§
one to perform a detailed comparison of the data with ana:-

lytical estimates. Indeed, the application of the relatid8)
for the WBRM model gives

2
A2(t)= §t2v§b3, (44)

parameters ardl=924,b=110,D=1.0,V,= 1.0, and correspond-
ingly I'gy~6.28, Ag~14.8. Solid curves foS(t) andl;,(t) are
numerical data, dashed curves represent analytical expresgins
[for S(t)] and (38) (for I;,,). Diamonds, connected by the solid
line, correspond to numerical data fa(t).

see also Ref{19]. Therefore, for the parameters of Fig. 10
we haveA(t)=Bt with B=1/2 b¥2/,~950, which is in
good agreement with numerical data. We can also find the
ritical time ty after which the ballistic spread of the packet
erminates. For this, we estimate the maximal width of
packet via the width ¢ of the SFA,,~2A¢ . This leads to

rﬁhe estimate ,~ \/6/b, and therefore for Fig. 3 we haug,

~21, which corresponds perfectly to the data. These esti-
mates have also been checked for other valueg,adndb,

with the same good correspondence between simple esti-

r{11ates and numerical data.

Comparing the global time dependence of the quantities
presented in Fig.10 with the results for the TBRI mogkle
Fig. 6), one can see that the main difference is the type of
gscillations for the width of packets(t). That is, in contrast
to the TBRI model where the period of oscillation is much
larger than the time scateg, of the ballistic spread, in Fig. 10
pe periodT is just defined by the ballistic spreati=2t,,.

Indeed, for the WBRM there is no specific evolution in

the Fock space due to the two-body nature of the interaction.

Formally, the cascade model can be applied to the WBRM
with the number of classeg.=1, since all states within the
nergy bandA,=bD start to be involved in the dynamics
immediately. This means that, in contrast to the TBRI model,
in the WBRM there is only one mechanism for the oscilla-
tions, namely, the reflection inside the energy shell that is
populatedergodically, when time is running. No oscillations
are detected for the number of principal compong(ite
data for larger times are not showihis confirms our con-
clusion about one kind of reflection from the edges of the
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FIG. 11. Wave packetV,(t) for the WBRM at different times

£=0.01, 0.02, 0.04, 5.0 for the parameters of Fig. 10. One particular /G- 12. The same as in Fig. 10 for the case when tfe form of
band random matrix is used without any additional average. the SF is close to Gaussian. The parametershar®24, b=110,

D=1.0,V,=3.0, and correspondingly g\,~56.5, Ag~45.5.
energy shell. It is interesting to note that the number of prin-
cipal components does not reveal noticeable oscillations OPhear increase o8(t) in Fig. 10, in contrast to Fig. 12 where

the time scale of the ballistic spread since on this scale thﬁ1e linear time dependence is clearly sdapart from the
value of N, is very small. very small time scale This very fact may be quite generic,

The difference between these two models can also be segf}, o i, the TBRI model we also see a nonlinear character of
when comparing the structure of wave packets in the ba5|§he entropy increase in the BW regime

representation at some time instants before the saturation
(compare Fig. 11 with Fig.)7 In contrast to Fig. 7 where
many “holes.” can be reahzgd in the distribution; , fqr the VIIl. CONCLUSIONS

WBRM the filling of the available energy range of size2

occurs ergodically. In both cases very strong fluctuations are In conclusion, we have studied the evolution of closed
present, which are expected to be Gauséiae discussion in  Fermi systems by making use of the standard model with
[8]). It is important to stress that in order to reveal this dif- random two-body matrix elements. Our main interest is in
ference we should avoid the ensemble average which wash#fse dynamics of packets in the unperturbed energy represen-
out the presence of hold# different Hamiltonian matrices tation, for the case when initially only one basis state is
have different unperturbed spegtrahis fact reflects one of excited. The problem of the spread of the energy due to the
the basic peculiarities of the TBRI, namely, the nonergodidnteraction between particles is important in many physical
character of the matricdshe average over the spectrum in- situations, such as complex atoms and nuclei, metallic clus-
side one(very big matrix may give a completely different ters, and spin systems.

result from that obtained by an ensemble average; see refer- First, we briefly discussed the simpler question of the
ences in the revie30])]. probability Wy (t) of finding the system in an initial state. As

Finally, we present the data for the WBRM in the case ofis known, the time dependence of this quantity is entirely
the Gaussian form of the strength functi¢eee Fig. 12  determined by the spreading function which is also known in
Here we can also see oscillations in the width of packets. Asolid state physics as the local density of states. Typically,
for the number of principal components found from the in-this function is assumed to be of the Lorentzian form (
verse participation ratio, numerical data manifest the oscillaregime; however, in our two-body random interaction model
tions, as well, with the same period as for the width of pack-it depends on the interaction strength, and for a relatively
ets. In average, the numerical data &ft) andl;,, are well  strong interaction between particles it is close to Gaussian
described by the simple analytical expressions relating theqgs regime. This situation was found to be typical in com-
quantities to the probabilityV,(t) of staying in the initial  plex nuclei[3] where the residual pseudorandom interaction
state. is quite strong.

The most interesting result that can be drawn from the In order to analyze the dynamics of our model for any
numerical data presented in Fig. 10 and Fig. 12 is a cleainteraction strength, we suggest a phenomenological expres-
difference in the time dependence of the entr&pt). Com-  sion for the SF that interpolates between the Lorentzian and
paring the data in the insets, one can conclude that a linedaussian and depends on a few control parameters of the
increase of the entropy occurs for the case when the form ahodel. This expression allows one to find the time depen-
the SF is close to Gaussian, but not for the case of the BvdenceWy(t) in both theL andG regimes(see details ifi27];
form. Indeed, it is hard to indicate a clear time scale of theone should also note that the problem of a long-time
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asymptotic for decay of a single-particle state was recentlpf S(t) obtained from the cascade model agrees perfectly
considered i 34]). with direct numerical computations.

It is a much more difficult problem to find global charac- It is important to note that the linear increaseS§t) was
teristics for the evolution of wave packets. For this, onerecently revealed in classical dynamical systems with chaotic
needs to know the time dependence for all probabiliied€havior[32]. The rate of entropy increase was numerically
W(t). To treat this problem analytically, we suggest afound to be defined by the Lyapunov exponent that charac-
simple cascade model that describes the dynamics of exciti€rizes the exponential divergence of close trajectories in the
tion in the Fock space of the system. This model is based oRhase space. Note that our model has no classical limit. In
the fact that any given basis state interacts not with all basil!iS "eSPect, itis very interesting to understand whether there
states but with those that are directly coupled by a two-bodyS @ny connection between these two facts.
interaction. As a result, it is more convenient to describe the _Analogously, we have studied the time dependence of the

excitation in terms of subclasses that are defined by the twoVidth of wave packets, determined via the second moment,
body interaction. and the inverse participation ratio, which is widely used for
The cascade model allows us to find an analytical solutioin€ estimate oN,.. Our analytical expressions give good
for W,(t) for a large number of particles, by neglecting the 29reement with numerical data, in spite of the relatively
reverse energy flow. Using the expressions obtained, we haynall number=6) of particles. This means that the simple

studied some important quantities that characterize the glob§fScade model gives an adequate description of the evolution
dynamics of the wave function. of wave packets in the unperturbed basis of many-particle

First we analyzed how the entrog§(t) of the system States. , L .
increases due to the spread of packets in the unperturbed 1N€ numerical study has revealed a quite interesting phe-
basis. For this. we used the standard definition of the Shaflomenon of periodic oscillations for all quantities discussed
non entropy o,f wave packets, expressed by Eq). Al- above. We showed that these oscillations are due to the finite
though the entropys(t) depends on the basis, it gives im- number of classes in the cascade model, which is a conse-
portant information about wave packetshich also depend quence of the finite size of the F_ock_ space. Simple est_imates
on the chosen basigndeed, this entropy can be used to find based on the cascade model with finite Fock space give the
the effective numbeiN .~ exdS(t)] of principal compo- correct value for the period of these oscillations. It is inter-

(o] . . . . .
nents presented in thepwave packet. It should be pointed o§Sting to note that in the basis representation these oscilla-

that the Shannon entropy of stationary eigenstates in sonfnS are reflected by a periodic change of the sparsity of
cases may be directly related to the thermodynamical enave packets and may be observed in real physical systems.
Finally, we performed numerical experiments with the so-

tropy (which is known to be basis independgrgee, e.g., 4 X .
[35?ya§1d references therein. pendg g called Wigner band random matrices which have been stud-

For small times the increase of entropy in our model Waé'ed re(_:ently in_ gre_at detail in connection with c_haotic_con-
found to have quadratic time dependensé)~t2, which servative Han_mltoman systenp$9,21—-24. Comparison with
seems to be generic. The most interesting question is aboﬂ?e two_-body interaction model has_shown to what extent the
the time dependence &(t) on the large time scale before 9ynamics of the wave packets is similar.
the saturation of wave packets. One of the most interesting
results we found is that the increaseSft) turns out to be
different depending on the form of the strength function. It This work was supported by the Australian Research
was found that in th& regime the entropy increases linearly Council. One of ugF.M.l.) gratefully acknowledges support
in time on a large time scale. The simple analytical estimatdyy CONACyYT (Mexico), Grant No. 34668-E.
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